Frame the encrypted data independently of inter-packet boundaries and

authenticate each frame before parsing its contents. Each connection
starts with a tag, followed by any number of frames, each starting
with the frame number (32 bits) and payload length (16 bits), and
ending with a MAC (256 bits).

Tags have the following format: 32 bits reserved, 16 bits for the
transport ID, 32 bits for the connection number, 32 bits (set to zero
in the tag) for the frame number, and 16 bits (set to zero in the tag)
for the block number. The tag is encrypted with the tag key in
ECB mode.

Frame numbers for each connection must start from zero and must be
contiguous and strictly increasing. Each frame is encrypted with the
frame key in CTR mode, using the plaintext tag with the appropriate
frame number to initialise the counter.

The maximum frame size is 64 KiB, including header and footer. The
maximum amount of data that can be sent over a connection is 2^32
frames - roughly 2^48 bytes, or 8 terabytes, with the maximum frame
size of 64 KiB. If that isn't sufficient we can add another 16 bits to
the frame counter.
This commit is contained in:
akwizgran
2011-08-19 01:46:51 +02:00
parent 4dd303d9e1
commit 2411e2008b
67 changed files with 1283 additions and 1440 deletions

View File

@@ -36,15 +36,14 @@
<test name='net.sf.briar.serial.ReaderImplTest'/>
<test name='net.sf.briar.serial.WriterImplTest'/>
<test name='net.sf.briar.setup.SetupWorkerTest'/>
<test name='net.sf.briar.transport.ConnectionDecrypterImplTest'/>
<test name='net.sf.briar.transport.ConnectionEncrypterImplTest'/>
<test name='net.sf.briar.transport.ConnectionReaderImplTest'/>
<test name='net.sf.briar.transport.ConnectionRecogniserImplTest'/>
<test name='net.sf.briar.transport.ConnectionWindowImplTest'/>
<test name='net.sf.briar.transport.PacketDecrypterImplTest'/>
<test name='net.sf.briar.transport.PacketEncrypterImplTest'/>
<test name='net.sf.briar.transport.PacketReaderImplTest'/>
<test name='net.sf.briar.transport.PacketReadWriteTest'/>
<test name='net.sf.briar.transport.PacketWriterImplTest'/>
<test name='net.sf.briar.transport.TagDecoderTest'/>
<test name='net.sf.briar.transport.TagEncoderTest'/>
<test name='net.sf.briar.transport.ConnectionWriterImplTest'/>
<test name='net.sf.briar.transport.FrameReadWriteTest'/>
<test name='net.sf.briar.util.ByteUtilsTest'/>
<test name='net.sf.briar.util.FileUtilsTest'/>
<test name='net.sf.briar.util.StringUtilsTest'/>
<test name='net.sf.briar.util.ZipUtilsTest'/>

View File

@@ -41,10 +41,10 @@ import net.sf.briar.api.protocol.writers.ProtocolWriterFactory;
import net.sf.briar.api.protocol.writers.RequestWriter;
import net.sf.briar.api.protocol.writers.SubscriptionWriter;
import net.sf.briar.api.protocol.writers.TransportWriter;
import net.sf.briar.api.transport.PacketReader;
import net.sf.briar.api.transport.PacketReaderFactory;
import net.sf.briar.api.transport.PacketWriter;
import net.sf.briar.api.transport.PacketWriterFactory;
import net.sf.briar.api.transport.ConnectionReader;
import net.sf.briar.api.transport.ConnectionReaderFactory;
import net.sf.briar.api.transport.ConnectionWriter;
import net.sf.briar.api.transport.ConnectionWriterFactory;
import net.sf.briar.crypto.CryptoModule;
import net.sf.briar.protocol.ProtocolModule;
import net.sf.briar.protocol.writers.WritersModule;
@@ -66,8 +66,8 @@ public class FileReadWriteTest extends TestCase {
private final BatchId ack = new BatchId(TestUtils.getRandomId());
private final long timestamp = System.currentTimeMillis();
private final PacketReaderFactory packetReaderFactory;
private final PacketWriterFactory packetWriterFactory;
private final ConnectionReaderFactory connectionReaderFactory;
private final ConnectionWriterFactory connectionWriterFactory;
private final ProtocolReaderFactory protocolReaderFactory;
private final ProtocolWriterFactory protocolWriterFactory;
private final CryptoComponent crypto;
@@ -87,8 +87,8 @@ public class FileReadWriteTest extends TestCase {
Injector i = Guice.createInjector(new CryptoModule(),
new ProtocolModule(), new SerialModule(), new TransportModule(),
new WritersModule());
packetReaderFactory = i.getInstance(PacketReaderFactory.class);
packetWriterFactory = i.getInstance(PacketWriterFactory.class);
connectionReaderFactory = i.getInstance(ConnectionReaderFactory.class);
connectionWriterFactory = i.getInstance(ConnectionWriterFactory.class);
protocolReaderFactory = i.getInstance(ProtocolReaderFactory.class);
protocolWriterFactory = i.getInstance(ProtocolWriterFactory.class);
crypto = i.getInstance(CryptoComponent.class);
@@ -134,14 +134,13 @@ public class FileReadWriteTest extends TestCase {
public void testWriteFile() throws Exception {
OutputStream out = new FileOutputStream(file);
// Use Alice's secret for writing
PacketWriter packetWriter = packetWriterFactory.createPacketWriter(out,
ConnectionWriter w = connectionWriterFactory.createConnectionWriter(out,
transportId, connection, aliceSecret);
out = packetWriter.getOutputStream();
out = w.getOutputStream();
AckWriter a = protocolWriterFactory.createAckWriter(out);
assertTrue(a.writeBatchId(ack));
a.finish();
packetWriter.finishPacket();
BatchWriter b = protocolWriterFactory.createBatchWriter(out);
assertTrue(b.writeMessage(message.getBytes()));
@@ -149,7 +148,6 @@ public class FileReadWriteTest extends TestCase {
assertTrue(b.writeMessage(message2.getBytes()));
assertTrue(b.writeMessage(message3.getBytes()));
b.finish();
packetWriter.finishPacket();
OfferWriter o = protocolWriterFactory.createOfferWriter(out);
assertTrue(o.writeMessageId(message.getId()));
@@ -157,14 +155,12 @@ public class FileReadWriteTest extends TestCase {
assertTrue(o.writeMessageId(message2.getId()));
assertTrue(o.writeMessageId(message3.getId()));
o.finish();
packetWriter.finishPacket();
RequestWriter r = protocolWriterFactory.createRequestWriter(out);
BitSet requested = new BitSet(4);
requested.set(1);
requested.set(3);
r.writeRequest(offerId, requested, 4);
packetWriter.finishPacket();
SubscriptionWriter s =
protocolWriterFactory.createSubscriptionWriter(out);
@@ -173,14 +169,12 @@ public class FileReadWriteTest extends TestCase {
subs.put(group, 0L);
subs.put(group1, 0L);
s.writeSubscriptions(subs, timestamp);
packetWriter.finishPacket();
TransportWriter t = protocolWriterFactory.createTransportWriter(out);
t.writeTransports(transports, timestamp);
packetWriter.finishPacket();
out.flush();
out.close();
w.getOutputStream().flush();
w.getOutputStream().close();
assertTrue(file.exists());
assertTrue(file.length() > message.getSize());
}
@@ -200,22 +194,20 @@ public class FileReadWriteTest extends TestCase {
}
assertEquals(16, offset);
// Use Bob's secret for reading
PacketReader packetReader = packetReaderFactory.createPacketReader(
firstTag, in, transportId, connection, bobSecret);
in = packetReader.getInputStream();
ConnectionReader r = connectionReaderFactory.createConnectionReader(in,
transportId, connection, bobSecret);
in = r.getInputStream();
ProtocolReader protocolReader =
protocolReaderFactory.createProtocolReader(in);
// Read the ack
assertTrue(protocolReader.hasAck());
Ack a = protocolReader.readAck();
packetReader.finishPacket();
assertEquals(Collections.singletonList(ack), a.getBatchIds());
// Read the batch
assertTrue(protocolReader.hasBatch());
Batch b = protocolReader.readBatch();
packetReader.finishPacket();
Collection<Message> messages = b.getMessages();
assertEquals(4, messages.size());
Iterator<Message> it = messages.iterator();
@@ -227,7 +219,6 @@ public class FileReadWriteTest extends TestCase {
// Read the offer
assertTrue(protocolReader.hasOffer());
Offer o = protocolReader.readOffer();
packetReader.finishPacket();
Collection<MessageId> offered = o.getMessageIds();
assertEquals(4, offered.size());
Iterator<MessageId> it1 = offered.iterator();
@@ -238,10 +229,9 @@ public class FileReadWriteTest extends TestCase {
// Read the request
assertTrue(protocolReader.hasRequest());
Request r = protocolReader.readRequest();
packetReader.finishPacket();
assertEquals(offerId, r.getOfferId());
BitSet requested = r.getBitmap();
Request req = protocolReader.readRequest();
assertEquals(offerId, req.getOfferId());
BitSet requested = req.getBitmap();
assertFalse(requested.get(0));
assertTrue(requested.get(1));
assertFalse(requested.get(2));
@@ -252,7 +242,6 @@ public class FileReadWriteTest extends TestCase {
// Read the subscription update
assertTrue(protocolReader.hasSubscriptionUpdate());
SubscriptionUpdate s = protocolReader.readSubscriptionUpdate();
packetReader.finishPacket();
Map<Group, Long> subs = s.getSubscriptions();
assertEquals(2, subs.size());
assertEquals(Long.valueOf(0L), subs.get(group));
@@ -262,7 +251,6 @@ public class FileReadWriteTest extends TestCase {
// Read the transport update
assertTrue(protocolReader.hasTransportUpdate());
TransportUpdate t = protocolReader.readTransportUpdate();
packetReader.finishPacket();
assertEquals(transports, t.getTransports());
assertTrue(t.getTimestamp() == timestamp);

View File

@@ -3,10 +3,12 @@ package net.sf.briar;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintStream;
import java.util.Random;
import java.util.concurrent.atomic.AtomicInteger;
import junit.framework.TestCase;
import net.sf.briar.api.protocol.UniqueId;
public class TestUtils {
@@ -60,4 +62,14 @@ public class TestUtils {
random.nextBytes(b);
return b;
}
public static void readFully(InputStream in, byte[] b) throws IOException {
int offset = 0;
while(offset < b.length) {
int read = in.read(b, offset, b.length - offset);
if(read == -1) break;
offset += read;
}
TestCase.assertEquals(b.length, offset);
}
}

View File

@@ -87,31 +87,28 @@ public class CounterModeTest extends TestCase {
@Test
public void testLeastSignificantBitsUsedAsCounter()
throws GeneralSecurityException {
// Initialise the least significant 32 bits of the IV to zero and
// Initialise the least significant 16 bits of the IV to zero and
// encrypt ten blocks of zeroes
byte[] plaintext = new byte[BLOCK_SIZE_BYTES * 10];
byte[] ivBytes = new byte[BLOCK_SIZE_BYTES];
random.nextBytes(ivBytes);
for(int i = BLOCK_SIZE_BYTES - 4; i < BLOCK_SIZE_BYTES; i++) {
ivBytes[i] = 0;
}
ivBytes[BLOCK_SIZE_BYTES - 2] = 0;
ivBytes[BLOCK_SIZE_BYTES - 1] = 0;
IvParameterSpec iv = new IvParameterSpec(ivBytes);
Cipher cipher = Cipher.getInstance(CIPHER_MODE, PROVIDER);
cipher.init(Cipher.ENCRYPT_MODE, key, iv);
byte[] ciphertext =
new byte[cipher.getOutputSize(plaintext.length)];
byte[] ciphertext = new byte[cipher.getOutputSize(plaintext.length)];
cipher.doFinal(plaintext, 0, plaintext.length, ciphertext, 0);
// Initialise the least significant 32 bits of the IV to one and
// Make sure the IV array hasn't been modified
assertEquals(0, ivBytes[BLOCK_SIZE_BYTES - 2]);
assertEquals(0, ivBytes[BLOCK_SIZE_BYTES - 1]);
// Initialise the least significant 16 bits of the IV to one and
// encrypt another ten blocks of zeroes
for(int i = BLOCK_SIZE_BYTES - 4; i < BLOCK_SIZE_BYTES; i++) {
assertEquals(0, ivBytes[i]);
}
ivBytes[BLOCK_SIZE_BYTES - 1] = 1;
iv = new IvParameterSpec(ivBytes);
cipher = Cipher.getInstance(CIPHER_MODE, PROVIDER);
cipher.init(Cipher.ENCRYPT_MODE, key, iv);
byte[] ciphertext1 =
new byte[cipher.getOutputSize(plaintext.length)];
byte[] ciphertext1 = new byte[cipher.getOutputSize(plaintext.length)];
cipher.doFinal(plaintext, 0, plaintext.length, ciphertext1, 0);
// The last nine blocks of the first ciphertext should be identical to
// the first nine blocks of the second ciphertext
@@ -121,38 +118,34 @@ public class CounterModeTest extends TestCase {
}
@Test
public void testCounterUsesMoreThan32Bits()
public void testCounterUsesMoreThan16Bits()
throws GeneralSecurityException {
// Initialise the least significant bits of the IV to 2^32-1 and
// Initialise the least significant bits of the IV to 2^16-1 and
// encrypt ten blocks of zeroes
byte[] plaintext = new byte[BLOCK_SIZE_BYTES * 10];
byte[] ivBytes = new byte[BLOCK_SIZE_BYTES];
random.nextBytes(ivBytes);
ivBytes[BLOCK_SIZE_BYTES - 5] = 0;
for(int i = BLOCK_SIZE_BYTES - 4; i < BLOCK_SIZE_BYTES; i++) {
ivBytes[i] = (byte) 255;
}
ivBytes[BLOCK_SIZE_BYTES - 3] = 0;
ivBytes[BLOCK_SIZE_BYTES - 2] = (byte) 255;
ivBytes[BLOCK_SIZE_BYTES - 1] = (byte) 255;
IvParameterSpec iv = new IvParameterSpec(ivBytes);
Cipher cipher = Cipher.getInstance(CIPHER_MODE, PROVIDER);
cipher.init(Cipher.ENCRYPT_MODE, key, iv);
byte[] ciphertext =
new byte[cipher.getOutputSize(plaintext.length)];
byte[] ciphertext = new byte[cipher.getOutputSize(plaintext.length)];
cipher.doFinal(plaintext, 0, plaintext.length, ciphertext, 0);
// Initialise the least significant bits of the IV to 2^32 and
// Make sure the IV array hasn't been modified
assertEquals(0, ivBytes[BLOCK_SIZE_BYTES - 3]);
assertEquals((byte) 255, ivBytes[BLOCK_SIZE_BYTES - 2]);
assertEquals((byte) 255, ivBytes[BLOCK_SIZE_BYTES - 1]);
// Initialise the least significant bits of the IV to 2^16 and
// encrypt another ten blocks of zeroes
assertEquals(0, ivBytes[BLOCK_SIZE_BYTES - 5]);
for(int i = BLOCK_SIZE_BYTES - 4; i < BLOCK_SIZE_BYTES; i++) {
assertEquals((byte) 255, ivBytes[i]);
}
ivBytes[BLOCK_SIZE_BYTES - 5] = 1;
for(int i = BLOCK_SIZE_BYTES - 4; i < BLOCK_SIZE_BYTES; i++) {
ivBytes[i] = 0;
}
ivBytes[BLOCK_SIZE_BYTES - 3] = 1;
ivBytes[BLOCK_SIZE_BYTES - 2] = 0;
ivBytes[BLOCK_SIZE_BYTES - 1] = 0;
iv = new IvParameterSpec(ivBytes);
cipher = Cipher.getInstance(CIPHER_MODE, PROVIDER);
cipher.init(Cipher.ENCRYPT_MODE, key, iv);
byte[] ciphertext1 =
new byte[cipher.getOutputSize(plaintext.length)];
byte[] ciphertext1 = new byte[cipher.getOutputSize(plaintext.length)];
cipher.doFinal(plaintext, 0, plaintext.length, ciphertext1, 0);
// The last nine blocks of the first ciphertext should be identical to
// the first nine blocks of the second ciphertext

View File

@@ -27,22 +27,22 @@ public class CryptoComponentTest extends TestCase {
// Check that Alice's incoming keys match Bob's outgoing keys
assertEquals(crypto.deriveIncomingMacKey(aliceSecret),
crypto.deriveOutgoingMacKey(bobSecret));
assertEquals(crypto.deriveIncomingPacketKey(aliceSecret),
crypto.deriveOutgoingPacketKey(bobSecret));
assertEquals(crypto.deriveIncomingFrameKey(aliceSecret),
crypto.deriveOutgoingFrameKey(bobSecret));
assertEquals(crypto.deriveIncomingTagKey(aliceSecret),
crypto.deriveOutgoingTagKey(bobSecret));
// Check that Alice's outgoing keys match Bob's incoming keys
assertEquals(crypto.deriveOutgoingMacKey(aliceSecret),
crypto.deriveIncomingMacKey(bobSecret));
assertEquals(crypto.deriveOutgoingPacketKey(aliceSecret),
crypto.deriveIncomingPacketKey(bobSecret));
assertEquals(crypto.deriveOutgoingFrameKey(aliceSecret),
crypto.deriveIncomingFrameKey(bobSecret));
assertEquals(crypto.deriveOutgoingTagKey(aliceSecret),
crypto.deriveIncomingTagKey(bobSecret));
// Check that Alice's incoming and outgoing keys are different
assertFalse(crypto.deriveIncomingMacKey(aliceSecret).equals(
crypto.deriveOutgoingMacKey(aliceSecret)));
assertFalse(crypto.deriveIncomingPacketKey(aliceSecret).equals(
crypto.deriveOutgoingPacketKey(aliceSecret)));
assertFalse(crypto.deriveIncomingFrameKey(aliceSecret).equals(
crypto.deriveOutgoingFrameKey(aliceSecret)));
assertFalse(crypto.deriveIncomingTagKey(aliceSecret).equals(
crypto.deriveOutgoingTagKey(aliceSecret)));
}

View File

@@ -7,12 +7,12 @@ import java.util.Collections;
import java.util.Random;
import junit.framework.TestCase;
import net.sf.briar.api.FormatException;
import net.sf.briar.api.protocol.Ack;
import net.sf.briar.api.protocol.BatchId;
import net.sf.briar.api.protocol.ProtocolConstants;
import net.sf.briar.api.protocol.Tags;
import net.sf.briar.api.protocol.UniqueId;
import net.sf.briar.api.serial.FormatException;
import net.sf.briar.api.serial.Reader;
import net.sf.briar.api.serial.ReaderFactory;
import net.sf.briar.api.serial.Writer;

View File

@@ -7,13 +7,13 @@ import java.security.MessageDigest;
import java.util.Collections;
import junit.framework.TestCase;
import net.sf.briar.api.FormatException;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.api.protocol.Batch;
import net.sf.briar.api.protocol.BatchId;
import net.sf.briar.api.protocol.Message;
import net.sf.briar.api.protocol.ProtocolConstants;
import net.sf.briar.api.protocol.Tags;
import net.sf.briar.api.serial.FormatException;
import net.sf.briar.api.serial.ObjectReader;
import net.sf.briar.api.serial.Reader;
import net.sf.briar.api.serial.ReaderFactory;

View File

@@ -7,8 +7,8 @@ import java.util.Arrays;
import java.util.Random;
import junit.framework.TestCase;
import net.sf.briar.api.FormatException;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.api.serial.FormatException;
import net.sf.briar.crypto.CryptoModule;
import org.junit.Before;

View File

@@ -5,12 +5,12 @@ import java.io.ByteArrayOutputStream;
import java.util.BitSet;
import junit.framework.TestCase;
import net.sf.briar.api.FormatException;
import net.sf.briar.api.protocol.OfferId;
import net.sf.briar.api.protocol.ProtocolConstants;
import net.sf.briar.api.protocol.Request;
import net.sf.briar.api.protocol.Tags;
import net.sf.briar.api.protocol.UniqueId;
import net.sf.briar.api.serial.FormatException;
import net.sf.briar.api.serial.Reader;
import net.sf.briar.api.serial.ReaderFactory;
import net.sf.briar.api.serial.Writer;

View File

@@ -11,8 +11,8 @@ import java.util.Map.Entry;
import junit.framework.TestCase;
import net.sf.briar.api.Bytes;
import net.sf.briar.api.FormatException;
import net.sf.briar.api.serial.Consumer;
import net.sf.briar.api.serial.FormatException;
import net.sf.briar.api.serial.ObjectReader;
import net.sf.briar.api.serial.Reader;
import net.sf.briar.util.StringUtils;

View File

@@ -0,0 +1,100 @@
package net.sf.briar.transport;
import static net.sf.briar.api.transport.TransportConstants.TAG_LENGTH;
import java.io.ByteArrayInputStream;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import junit.framework.TestCase;
import net.sf.briar.TestUtils;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.crypto.CryptoModule;
import org.apache.commons.io.output.ByteArrayOutputStream;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class ConnectionDecrypterImplTest extends TestCase {
private static final int MAC_LENGTH = 32;
private final Cipher frameCipher;
private final SecretKey frameKey;
private final int transportId = 1234;
private final long connection = 12345L;
public ConnectionDecrypterImplTest() {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
frameCipher = crypto.getFrameCipher();
frameKey = crypto.generateSecretKey();
}
@Test
public void testSingleByteFrame() throws Exception {
// Create a fake ciphertext frame: one byte plus a MAC
byte[] ciphertext = new byte[1 + MAC_LENGTH];
ByteArrayInputStream in = new ByteArrayInputStream(ciphertext);
// Check that one byte plus a MAC can be read
ConnectionDecrypter d = new ConnectionDecrypterImpl(in, transportId,
connection, frameCipher, frameKey);
assertFalse(d.getInputStream().read() == -1);
d.readMac(new byte[MAC_LENGTH]);
assertTrue(d.getInputStream().read() == -1);
}
@Test
public void testDecryption() throws Exception {
// Calculate the expected plaintext for the first frame
byte[] ciphertext = new byte[123];
byte[] ivBytes = new byte[TAG_LENGTH];
TagEncoder.encodeTag(ivBytes, transportId, connection, 0L);
IvParameterSpec iv = new IvParameterSpec(ivBytes);
frameCipher.init(Cipher.DECRYPT_MODE, frameKey, iv);
byte[] plaintext = frameCipher.doFinal(ciphertext);
// Calculate the expected plaintext for the second frame
byte[] ciphertext1 = new byte[1234];
TagEncoder.encodeTag(ivBytes, transportId, connection, 1L);
iv = new IvParameterSpec(ivBytes);
frameCipher.init(Cipher.DECRYPT_MODE, frameKey, iv);
byte[] plaintext1 = frameCipher.doFinal(ciphertext1);
assertEquals(ciphertext1.length, plaintext1.length);
// Concatenate the ciphertexts
ByteArrayOutputStream out = new ByteArrayOutputStream();
out.write(ciphertext);
out.write(ciphertext1);
ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray());
// Use a ConnectionDecrypter to decrypt the ciphertext
ConnectionDecrypter d = new ConnectionDecrypterImpl(in, transportId,
connection, frameCipher, frameKey);
// First frame
byte[] decrypted = new byte[plaintext.length - MAC_LENGTH];
TestUtils.readFully(d.getInputStream(), decrypted);
byte[] decryptedMac = new byte[MAC_LENGTH];
d.readMac(decryptedMac);
// Second frame
byte[] decrypted1 = new byte[plaintext1.length - MAC_LENGTH];
TestUtils.readFully(d.getInputStream(), decrypted1);
byte[] decryptedMac1 = new byte[MAC_LENGTH];
d.readMac(decryptedMac1);
// Check that the actual plaintext matches the expected plaintext
out.reset();
out.write(plaintext);
out.write(plaintext1);
byte[] expected = out.toByteArray();
out.reset();
out.write(decrypted);
out.write(decryptedMac);
out.write(decrypted1);
out.write(decryptedMac1);
byte[] actual = out.toByteArray();
assertTrue(Arrays.equals(expected, actual));
}
}

View File

@@ -0,0 +1,98 @@
package net.sf.briar.transport;
import static net.sf.briar.api.transport.TransportConstants.TAG_LENGTH;
import java.io.ByteArrayOutputStream;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import junit.framework.TestCase;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.crypto.CryptoModule;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class ConnectionEncrypterImplTest extends TestCase {
private static final int MAC_LENGTH = 32;
private final Cipher tagCipher, frameCipher;
private final SecretKey tagKey, frameKey;
private final int transportId = 1234;
private final long connection = 12345L;
public ConnectionEncrypterImplTest() {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
tagCipher = crypto.getTagCipher();
frameCipher = crypto.getFrameCipher();
tagKey = crypto.generateSecretKey();
frameKey = crypto.generateSecretKey();
}
@Test
public void testSingleByteFrame() throws Exception {
ByteArrayOutputStream out = new ByteArrayOutputStream();
ConnectionEncrypter e = new ConnectionEncrypterImpl(out, transportId,
connection, tagCipher, frameCipher, tagKey, frameKey);
e.getOutputStream().write((byte) 0);
e.writeMac(new byte[MAC_LENGTH]);
assertEquals(TAG_LENGTH + 1 + MAC_LENGTH, out.toByteArray().length);
}
@Test
public void testEncryption() throws Exception {
// Calculate the expected ciphertext for the tag
byte[] plaintextTag = TagEncoder.encodeTag(transportId, connection);
assertEquals(TAG_LENGTH, plaintextTag.length);
tagCipher.init(Cipher.ENCRYPT_MODE, tagKey);
byte[] tag = tagCipher.doFinal(plaintextTag);
assertEquals(TAG_LENGTH, tag.length);
// Calculate the expected ciphertext for the first frame
byte[] plaintext = new byte[123];
byte[] plaintextMac = new byte[MAC_LENGTH];
byte[] ivBytes = new byte[TAG_LENGTH];
TagEncoder.encodeTag(ivBytes, transportId, connection, 0L);
IvParameterSpec iv = new IvParameterSpec(ivBytes);
frameCipher.init(Cipher.ENCRYPT_MODE, frameKey, iv);
byte[] ciphertext = new byte[plaintext.length + plaintextMac.length];
int offset = frameCipher.update(plaintext, 0, plaintext.length,
ciphertext);
frameCipher.doFinal(plaintextMac, 0, plaintextMac.length, ciphertext,
offset);
// Calculate the expected ciphertext for the second frame
byte[] plaintext1 = new byte[1234];
TagEncoder.encodeTag(ivBytes, transportId, connection, 1L);
iv = new IvParameterSpec(ivBytes);
frameCipher.init(Cipher.ENCRYPT_MODE, frameKey, iv);
byte[] ciphertext1 = new byte[plaintext1.length + plaintextMac.length];
offset = frameCipher.update(plaintext1, 0, plaintext1.length,
ciphertext1);
frameCipher.doFinal(plaintextMac, 0, plaintextMac.length, ciphertext1,
offset);
// Concatenate the ciphertexts
ByteArrayOutputStream out = new ByteArrayOutputStream();
out.write(tag);
out.write(ciphertext);
out.write(ciphertext1);
byte[] expected = out.toByteArray();
// Use a ConnectionEncrypter to encrypt the plaintext
out.reset();
ConnectionEncrypter e = new ConnectionEncrypterImpl(out, transportId,
connection, tagCipher, frameCipher, tagKey, frameKey);
e.getOutputStream().write(plaintext);
e.writeMac(plaintextMac);
e.getOutputStream().write(plaintext1);
e.writeMac(plaintextMac);
byte[] actual = out.toByteArray();
// Check that the actual ciphertext matches the expected ciphertext
assertTrue(Arrays.equals(expected, actual));
}
}

View File

@@ -0,0 +1,106 @@
package net.sf.briar.transport;
import java.io.ByteArrayInputStream;
import java.io.EOFException;
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import javax.crypto.Mac;
import junit.framework.TestCase;
import net.sf.briar.TestUtils;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.api.transport.ConnectionReader;
import net.sf.briar.crypto.CryptoModule;
import net.sf.briar.util.ByteUtils;
import org.apache.commons.io.output.ByteArrayOutputStream;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class ConnectionReaderImplTest extends TestCase {
private final Mac mac;
public ConnectionReaderImplTest() throws Exception {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
mac = crypto.getMac();
mac.init(crypto.generateSecretKey());
}
@Test
public void testSingleByteFrame() throws Exception {
// Six bytes for the header, one for the payload
byte[] frame = new byte[6 + 1 + mac.getMacLength()];
ByteUtils.writeUint16(1, frame, 4); // Payload length = 1
// Calculate the MAC
mac.update(frame, 0, 6 + 1);
mac.doFinal(frame, 6 + 1);
// Read the frame
ByteArrayInputStream in = new ByteArrayInputStream(frame);
ConnectionDecrypter d = new NullConnectionDecrypter(in);
ConnectionReader r = new ConnectionReaderImpl(d, mac);
// There should be one byte available before EOF
assertEquals(0, r.getInputStream().read());
assertEquals(-1, r.getInputStream().read());
}
@Test
public void testMultipleFrames() throws Exception {
// First frame: 123-byte payload
byte[] frame = new byte[6 + 123 + mac.getMacLength()];
ByteUtils.writeUint16(123, frame, 4);
mac.update(frame, 0, 6 + 123);
mac.doFinal(frame, 6 + 123);
// Second frame: 1234-byte payload
byte[] frame1 = new byte[6 + 1234 + mac.getMacLength()];
ByteUtils.writeUint32(1, frame1, 0);
ByteUtils.writeUint16(1234, frame1, 4);
mac.update(frame1, 0, 6 + 1234);
mac.doFinal(frame1, 6 + 1234);
// Concatenate the frames
ByteArrayOutputStream out = new ByteArrayOutputStream();
out.write(frame);
out.write(frame1);
// Read the frames
ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray());
ConnectionDecrypter d = new NullConnectionDecrypter(in);
ConnectionReader r = new ConnectionReaderImpl(d, mac);
byte[] read = new byte[123];
TestUtils.readFully(r.getInputStream(), read);
assertTrue(Arrays.equals(new byte[123], read));
byte[] read1 = new byte[1234];
TestUtils.readFully(r.getInputStream(), read1);
assertTrue(Arrays.equals(new byte[1234], read1));
}
/** A ConnectionDecrypter that performs no decryption. */
private static class NullConnectionDecrypter
implements ConnectionDecrypter {
private final InputStream in;
private NullConnectionDecrypter(InputStream in) {
this.in = in;
}
public InputStream getInputStream() {
return in;
}
public void readMac(byte[] mac) throws IOException {
int offset = 0;
while(offset < mac.length) {
int read = in.read(mac, offset, mac.length - offset);
if(read == -1) break;
offset += read;
}
if(offset < mac.length) throw new EOFException();
}
}
}

View File

@@ -65,7 +65,7 @@ public class ConnectionRecogniserImplTest extends TestCase {
SecretKey tagKey = crypto.deriveIncomingTagKey(secret);
Cipher tagCipher = crypto.getTagCipher();
tagCipher.init(Cipher.ENCRYPT_MODE, tagKey);
byte[] tag = TagEncoder.encodeTag(transportId, 3L, 0);
byte[] tag = TagEncoder.encodeTag(transportId, 3L);
byte[] encryptedTag = tagCipher.doFinal(tag);
Mockery context = new Mockery();

View File

@@ -0,0 +1,98 @@
package net.sf.briar.transport;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Arrays;
import javax.crypto.Mac;
import junit.framework.TestCase;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.api.transport.ConnectionWriter;
import net.sf.briar.crypto.CryptoModule;
import net.sf.briar.util.ByteUtils;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class ConnectionWriterImplTest extends TestCase {
private final Mac mac;
public ConnectionWriterImplTest() throws Exception {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
mac = crypto.getMac();
mac.init(crypto.generateSecretKey());
}
@Test
public void testSingleByteFrame() throws Exception {
// Six bytes for the header, one for the payload
byte[] frame = new byte[6 + 1 + mac.getMacLength()];
ByteUtils.writeUint16(1, frame, 4); // Payload length = 1
// Calculate the MAC
mac.update(frame, 0, 6 + 1);
mac.doFinal(frame, 6 + 1);
// Check that the ConnectionWriter gets the same results
ByteArrayOutputStream out = new ByteArrayOutputStream();
ConnectionEncrypter e = new NullConnectionEncrypter(out);
ConnectionWriter w = new ConnectionWriterImpl(e, mac);
w.getOutputStream().write(0);
w.getOutputStream().flush();
assertTrue(Arrays.equals(frame, out.toByteArray()));
}
@Test
public void testMultipleFrames() throws Exception {
// First frame: 123-byte payload
byte[] frame = new byte[6 + 123 + mac.getMacLength()];
ByteUtils.writeUint16(123, frame, 4);
mac.update(frame, 0, 6 + 123);
mac.doFinal(frame, 6 + 123);
// Second frame: 1234-byte payload
byte[] frame1 = new byte[6 + 1234 + mac.getMacLength()];
ByteUtils.writeUint32(1, frame1, 0);
ByteUtils.writeUint16(1234, frame1, 4);
mac.update(frame1, 0, 6 + 1234);
mac.doFinal(frame1, 6 + 1234);
// Concatenate the frames
ByteArrayOutputStream out = new ByteArrayOutputStream();
out.write(frame);
out.write(frame1);
byte[] expected = out.toByteArray();
// Check that the ConnectionWriter gets the same results
out.reset();
ConnectionEncrypter e = new NullConnectionEncrypter(out);
ConnectionWriter w = new ConnectionWriterImpl(e, mac);
w.getOutputStream().write(new byte[123]);
w.getOutputStream().flush();
w.getOutputStream().write(new byte[1234]);
w.getOutputStream().flush();
byte[] actual = out.toByteArray();
assertTrue(Arrays.equals(expected, actual));
}
/** A ConnectionEncrypter that performs no encryption. */
private static class NullConnectionEncrypter
implements ConnectionEncrypter {
private final OutputStream out;
private NullConnectionEncrypter(OutputStream out) {
this.out = out;
}
public OutputStream getOutputStream() {
return out;
}
public void writeMac(byte[] mac) throws IOException {
out.write(mac);
}
}
}

View File

@@ -15,8 +15,8 @@ import javax.crypto.SecretKey;
import junit.framework.TestCase;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.api.transport.PacketReader;
import net.sf.briar.api.transport.PacketWriter;
import net.sf.briar.api.transport.ConnectionReader;
import net.sf.briar.api.transport.ConnectionWriter;
import net.sf.briar.crypto.CryptoModule;
import org.junit.Test;
@@ -24,60 +24,66 @@ import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class PacketReadWriteTest extends TestCase {
public class FrameReadWriteTest extends TestCase {
private final CryptoComponent crypto;
private final Cipher tagCipher, packetCipher;
private final SecretKey macKey, tagKey, packetKey;
private final Cipher tagCipher, frameCipher;
private final SecretKey macKey, tagKey, frameKey;
private final Mac mac;
private final Random random;
private final byte[] secret = new byte[100];
private final int transportId = 999;
private final long connection = 1234L;
public PacketReadWriteTest() {
public FrameReadWriteTest() {
super();
Injector i = Guice.createInjector(new CryptoModule());
crypto = i.getInstance(CryptoComponent.class);
tagCipher = crypto.getTagCipher();
packetCipher = crypto.getPacketCipher();
frameCipher = crypto.getFrameCipher();
// Since we're sending packets to ourselves, we only need outgoing keys
macKey = crypto.deriveOutgoingMacKey(secret);
tagKey = crypto.deriveOutgoingTagKey(secret);
packetKey = crypto.deriveOutgoingPacketKey(secret);
frameKey = crypto.deriveOutgoingFrameKey(secret);
mac = crypto.getMac();
random = new Random();
}
@Test
public void testWriteAndRead() throws Exception {
// Generate two random packets
byte[] packet = new byte[12345];
random.nextBytes(packet);
byte[] packet1 = new byte[321];
random.nextBytes(packet1);
// Write the packets
// Calculate the expected ciphertext for the tag
byte[] plaintextTag = TagEncoder.encodeTag(transportId, connection);
assertEquals(TAG_LENGTH, plaintextTag.length);
tagCipher.init(Cipher.ENCRYPT_MODE, tagKey);
byte[] tag = tagCipher.doFinal(plaintextTag);
assertEquals(TAG_LENGTH, tag.length);
// Generate two random frames
byte[] frame = new byte[12345];
random.nextBytes(frame);
byte[] frame1 = new byte[321];
random.nextBytes(frame1);
// Write the frames
ByteArrayOutputStream out = new ByteArrayOutputStream();
PacketEncrypter encrypter = new PacketEncrypterImpl(out, tagCipher,
packetCipher, tagKey, packetKey);
ConnectionEncrypter encrypter = new ConnectionEncrypterImpl(out,
transportId, connection, tagCipher, frameCipher, tagKey,
frameKey);
mac.init(macKey);
PacketWriter writer = new PacketWriterImpl(encrypter, mac, transportId,
connection);
ConnectionWriter writer = new ConnectionWriterImpl(encrypter, mac);
OutputStream out1 = writer.getOutputStream();
out1.write(packet);
writer.finishPacket();
out1.write(packet1);
writer.finishPacket();
// Read the packets back
out1.write(frame);
out1.flush();
out1.write(frame1);
out1.flush();
// Read the frames back
ByteArrayInputStream in = new ByteArrayInputStream(out.toByteArray());
byte[] firstTag = new byte[TAG_LENGTH];
assertEquals(TAG_LENGTH, in.read(firstTag));
PacketDecrypter decrypter = new PacketDecrypterImpl(firstTag, in,
tagCipher, packetCipher, tagKey, packetKey);
PacketReader reader = new PacketReaderImpl(decrypter, mac, transportId,
connection);
byte[] recoveredTag = new byte[TAG_LENGTH];
assertEquals(TAG_LENGTH, in.read(recoveredTag));
assertTrue(Arrays.equals(tag, recoveredTag));
ConnectionDecrypter decrypter = new ConnectionDecrypterImpl(in,
transportId, connection, frameCipher, frameKey);
ConnectionReader reader = new ConnectionReaderImpl(decrypter, mac);
InputStream in1 = reader.getInputStream();
byte[] recovered = new byte[packet.length];
byte[] recovered = new byte[frame.length];
int offset = 0;
while(offset < recovered.length) {
int read = in1.read(recovered, offset, recovered.length - offset);
@@ -85,9 +91,8 @@ public class PacketReadWriteTest extends TestCase {
offset += read;
}
assertEquals(recovered.length, offset);
reader.finishPacket();
assertTrue(Arrays.equals(packet, recovered));
byte[] recovered1 = new byte[packet1.length];
assertTrue(Arrays.equals(frame, recovered));
byte[] recovered1 = new byte[frame1.length];
offset = 0;
while(offset < recovered1.length) {
int read = in1.read(recovered1, offset, recovered1.length - offset);
@@ -95,7 +100,6 @@ public class PacketReadWriteTest extends TestCase {
offset += read;
}
assertEquals(recovered1.length, offset);
reader.finishPacket();
assertTrue(Arrays.equals(packet1, recovered1));
assertTrue(Arrays.equals(frame1, recovered1));
}
}

View File

@@ -1,115 +0,0 @@
package net.sf.briar.transport;
import static net.sf.briar.api.transport.TransportConstants.TAG_LENGTH;
import java.io.ByteArrayInputStream;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import junit.framework.TestCase;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.crypto.CryptoModule;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class PacketDecrypterImplTest extends TestCase {
private final Cipher tagCipher, packetCipher;
private final SecretKey tagKey, packetKey;
public PacketDecrypterImplTest() {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
tagCipher = crypto.getTagCipher();
packetCipher = crypto.getPacketCipher();
tagKey = crypto.generateSecretKey();
packetKey = crypto.generateSecretKey();
}
@Test
public void testSingleBytePackets() throws Exception {
byte[] ciphertext = new byte[(TAG_LENGTH + 1) * 2];
ByteArrayInputStream in = new ByteArrayInputStream(ciphertext);
byte[] firstTag = new byte[TAG_LENGTH];
assertEquals(TAG_LENGTH, in.read(firstTag));
PacketDecrypter p = new PacketDecrypterImpl(firstTag, in, tagCipher,
packetCipher, tagKey, packetKey);
byte[] decryptedTag = p.readTag();
assertEquals(TAG_LENGTH, decryptedTag.length);
assertTrue(p.getInputStream().read() > -1);
byte[] decryptedTag1 = p.readTag();
assertEquals(TAG_LENGTH, decryptedTag1.length);
assertTrue(p.getInputStream().read() > -1);
}
@Test
public void testDecryption() throws Exception {
byte[] tag = new byte[TAG_LENGTH];
byte[] packet = new byte[123];
byte[] tag1 = new byte[TAG_LENGTH];
byte[] packet1 = new byte[234];
// Calculate the first expected decrypted tag
tagCipher.init(Cipher.DECRYPT_MODE, tagKey);
byte[] expectedTag = tagCipher.doFinal(tag);
assertEquals(tag.length, expectedTag.length);
// Calculate the first expected decrypted packet
IvParameterSpec iv = new IvParameterSpec(expectedTag);
packetCipher.init(Cipher.DECRYPT_MODE, packetKey, iv);
byte[] expectedPacket = packetCipher.doFinal(packet);
assertEquals(packet.length, expectedPacket.length);
// Calculate the second expected decrypted tag
tagCipher.init(Cipher.DECRYPT_MODE, tagKey);
byte[] expectedTag1 = tagCipher.doFinal(tag1);
assertEquals(tag1.length, expectedTag1.length);
// Calculate the second expected decrypted packet
IvParameterSpec iv1 = new IvParameterSpec(expectedTag1);
packetCipher.init(Cipher.DECRYPT_MODE, packetKey, iv1);
byte[] expectedPacket1 = packetCipher.doFinal(packet1);
assertEquals(packet1.length, expectedPacket1.length);
// Check that the PacketDecrypter gets the same results
byte[] ciphertext = new byte[tag.length + packet.length
+ tag1.length + packet1.length];
System.arraycopy(tag, 0, ciphertext, 0, tag.length);
System.arraycopy(packet, 0, ciphertext, tag.length, packet.length);
System.arraycopy(tag1, 0, ciphertext, tag.length + packet.length,
tag1.length);
System.arraycopy(packet1, 0, ciphertext,
tag.length + packet.length + tag1.length, packet1.length);
ByteArrayInputStream in = new ByteArrayInputStream(ciphertext);
PacketDecrypter p = new PacketDecrypterImpl(tag, in, tagCipher,
packetCipher, tagKey, packetKey);
// First tag
assertTrue(Arrays.equals(expectedTag, p.readTag()));
// First packet
byte[] actualPacket = new byte[packet.length];
int offset = 0;
while(offset < actualPacket.length) {
int read = p.getInputStream().read(actualPacket, offset,
actualPacket.length - offset);
if(read == -1) break;
offset += read;
}
assertEquals(actualPacket.length, offset);
assertTrue(Arrays.equals(expectedPacket, actualPacket));
// Second tag
assertTrue(Arrays.equals(expectedTag1, p.readTag()));
// Second packet
byte[] actualPacket1 = new byte[packet1.length];
offset = 0;
while(offset < actualPacket1.length) {
int read = p.getInputStream().read(actualPacket1, offset,
actualPacket1.length - offset);
if(read == -1) break;
offset += read;
}
assertEquals(actualPacket1.length, offset);
assertTrue(Arrays.equals(expectedPacket1, actualPacket1));
}
}

View File

@@ -1,79 +0,0 @@
package net.sf.briar.transport;
import static net.sf.briar.api.transport.TransportConstants.TAG_LENGTH;
import java.io.ByteArrayOutputStream;
import java.util.Arrays;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import junit.framework.TestCase;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.crypto.CryptoModule;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class PacketEncrypterImplTest extends TestCase {
private final Cipher tagCipher, packetCipher;
private final SecretKey tagKey, packetKey;
public PacketEncrypterImplTest() {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
tagCipher = crypto.getTagCipher();
packetCipher = crypto.getPacketCipher();
tagKey = crypto.generateSecretKey();
packetKey = crypto.generateSecretKey();
}
@Test
public void testSingleBytePacket() throws Exception {
ByteArrayOutputStream out = new ByteArrayOutputStream();
PacketEncrypter p = new PacketEncrypterImpl(out, tagCipher,
packetCipher, tagKey, packetKey);
p.writeTag(new byte[TAG_LENGTH]);
p.getOutputStream().write((byte) 0);
p.finishPacket();
assertEquals(TAG_LENGTH + 1, out.toByteArray().length);
}
@Test
public void testEncryption() throws Exception {
byte[] tag = new byte[TAG_LENGTH];
byte[] packet = new byte[123];
// Calculate the expected encrypted tag
tagCipher.init(Cipher.ENCRYPT_MODE, tagKey);
byte[] expectedTag = tagCipher.doFinal(tag);
assertEquals(tag.length, expectedTag.length);
// Calculate the expected encrypted packet
IvParameterSpec iv = new IvParameterSpec(tag);
packetCipher.init(Cipher.ENCRYPT_MODE, packetKey, iv);
byte[] expectedPacket = packetCipher.doFinal(packet);
assertEquals(packet.length, expectedPacket.length);
// Check that the PacketEncrypter gets the same results
ByteArrayOutputStream out = new ByteArrayOutputStream();
PacketEncrypter p = new PacketEncrypterImpl(out, tagCipher,
packetCipher, tagKey, packetKey);
p.writeTag(tag);
p.getOutputStream().write(packet);
p.finishPacket();
byte[] ciphertext = out.toByteArray();
assertEquals(TAG_LENGTH + packet.length, ciphertext.length);
// Check the tag
byte[] actualTag = new byte[TAG_LENGTH];
System.arraycopy(ciphertext, 0, actualTag, 0, TAG_LENGTH);
assertTrue(Arrays.equals(expectedTag, actualTag));
// Check the packet
byte[] actualPacket = new byte[packet.length];
System.arraycopy(ciphertext, TAG_LENGTH, actualPacket, 0,
actualPacket.length);
assertTrue(Arrays.equals(expectedPacket, actualPacket));
}
}

View File

@@ -1,189 +0,0 @@
package net.sf.briar.transport;
import static net.sf.briar.api.transport.TransportConstants.TAG_LENGTH;
import java.io.ByteArrayInputStream;
import java.io.EOFException;
import java.io.IOException;
import java.io.InputStream;
import java.security.GeneralSecurityException;
import java.util.Arrays;
import javax.crypto.Mac;
import junit.framework.TestCase;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.api.transport.PacketReader;
import net.sf.briar.crypto.CryptoModule;
import net.sf.briar.util.StringUtils;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class PacketReaderImplTest extends TestCase {
private final Mac mac;
public PacketReaderImplTest() throws Exception {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
mac = crypto.getMac();
mac.init(crypto.generateSecretKey());
}
@Test
public void testFirstReadTriggersTag() throws Exception {
// TAG_BYTES for the tag, 1 byte for the packet
byte[] b = new byte[TAG_LENGTH + 1];
ByteArrayInputStream in = new ByteArrayInputStream(b);
PacketDecrypter d = new NullPacketDecrypter(in);
PacketReader p = new PacketReaderImpl(d, mac, 0, 0L);
// There should be one byte available before EOF
assertEquals(0, p.getInputStream().read());
assertEquals(-1, p.getInputStream().read());
}
@Test
public void testFinishPacketAfterReadTriggersMac() throws Exception {
// TAG_BYTES for the tag, 1 byte for the packet
byte[] b = new byte[TAG_LENGTH + 1];
// Calculate the MAC and append it to the packet
mac.update(b);
byte[] macBytes = mac.doFinal();
byte[] b1 = Arrays.copyOf(b, b.length + macBytes.length);
System.arraycopy(macBytes, 0, b1, b.length, macBytes.length);
// Check that the PacketReader reads and verifies the MAC
ByteArrayInputStream in = new ByteArrayInputStream(b1);
PacketDecrypter d = new NullPacketDecrypter(in);
PacketReader p = new PacketReaderImpl(d, mac, 0, 0L);
assertEquals(0, p.getInputStream().read());
p.finishPacket();
// Reading the MAC should take us to EOF
assertEquals(-1, p.getInputStream().read());
}
@Test
public void testModifyingPacketInvalidatesMac() throws Exception {
// TAG_BYTES for the tag, 1 byte for the packet
byte[] b = new byte[TAG_LENGTH + 1];
// Calculate the MAC and append it to the packet
mac.update(b);
byte[] macBytes = mac.doFinal();
byte[] b1 = Arrays.copyOf(b, b.length + macBytes.length);
System.arraycopy(macBytes, 0, b1, b.length, macBytes.length);
// Modify the packet
b1[TAG_LENGTH] = (byte) 1;
// Check that the PacketReader reads and fails to verify the MAC
ByteArrayInputStream in = new ByteArrayInputStream(b1);
PacketDecrypter d = new NullPacketDecrypter(in);
PacketReader p = new PacketReaderImpl(d, mac, 0, 0L);
assertEquals(1, p.getInputStream().read());
try {
p.finishPacket();
fail();
} catch(GeneralSecurityException expected) {}
}
@Test
public void testExtraCallsToFinishPacketDoNothing() throws Exception {
// TAG_BYTES for the tag, 1 byte for the packet
byte[] b = new byte[TAG_LENGTH + 1];
// Calculate the MAC and append it to the packet
mac.update(b);
byte[] macBytes = mac.doFinal();
byte[] b1 = Arrays.copyOf(b, b.length + macBytes.length);
System.arraycopy(macBytes, 0, b1, b.length, macBytes.length);
// Check that the PacketReader reads and verifies the MAC
ByteArrayInputStream in = new ByteArrayInputStream(b1);
PacketDecrypter d = new NullPacketDecrypter(in);
PacketReader p = new PacketReaderImpl(d, mac, 0, 0L);
// Initial calls to finishPacket() should have no effect
p.finishPacket();
p.finishPacket();
p.finishPacket();
assertEquals(0, p.getInputStream().read());
p.finishPacket();
// Extra calls to finishPacket() should have no effect
p.finishPacket();
p.finishPacket();
p.finishPacket();
// Reading the MAC should take us to EOF
assertEquals(-1, p.getInputStream().read());
}
@Test
public void testPacketNumberIsIncremented() throws Exception {
byte[] tag = StringUtils.fromHexString(
"0000" // 16 bits reserved
+ "F00D" // 16 bits for the transport ID
+ "DEADBEEF" // 32 bits for the connection number
+ "00000000" // 32 bits for the packet number
+ "00000000" // 32 bits for the block number
);
assertEquals(TAG_LENGTH, tag.length);
byte[] tag1 = StringUtils.fromHexString(
"0000" // 16 bits reserved
+ "F00D" // 16 bits for the transport ID
+ "DEADBEEF" // 32 bits for the connection number
+ "00000001" // 32 bits for the packet number
+ "00000000" // 32 bits for the block number
);
assertEquals(TAG_LENGTH, tag1.length);
// Calculate the MAC on the first packet and append it to the packet
mac.update(tag);
mac.update((byte) 0);
byte[] macBytes = mac.doFinal();
byte[] b = Arrays.copyOf(tag, tag.length + 1 + macBytes.length);
System.arraycopy(macBytes, 0, b, tag.length + 1, macBytes.length);
// Calculate the MAC on the second packet and append it to the packet
mac.update(tag1);
mac.update((byte) 0);
byte[] macBytes1 = mac.doFinal();
byte[] b1 = Arrays.copyOf(tag1, tag1.length + 1 + macBytes1.length);
System.arraycopy(macBytes1, 0, b1, tag.length + 1, macBytes1.length);
// Check that the PacketReader accepts the correct tags and MACs
byte[] b2 = Arrays.copyOf(b, b.length + b1.length);
System.arraycopy(b1, 0, b2, b.length, b1.length);
ByteArrayInputStream in = new ByteArrayInputStream(b2);
PacketDecrypter d = new NullPacketDecrypter(in);
PacketReader p = new PacketReaderImpl(d, mac, 0xF00D, 0xDEADBEEFL);
// Packet one
assertEquals(0, p.getInputStream().read());
p.finishPacket();
// Packet two
assertEquals(0, p.getInputStream().read());
p.finishPacket();
// We should be at EOF
assertEquals(-1, p.getInputStream().read());
}
/** A PacketDecrypter that performs no decryption. */
private static class NullPacketDecrypter implements PacketDecrypter {
private final InputStream in;
private NullPacketDecrypter(InputStream in) {
this.in = in;
}
public InputStream getInputStream() {
return in;
}
public byte[] readTag() throws IOException {
byte[] tag = new byte[TAG_LENGTH];
int offset = 0;
while(offset < tag.length) {
int read = in.read(tag, offset, tag.length - offset);
if(read == -1) break;
offset += read;
}
if(offset == 0) return null; // EOF between packets is acceptable
if(offset < tag.length) throw new EOFException();
return tag;
}
}
}

View File

@@ -1,174 +0,0 @@
package net.sf.briar.transport;
import static net.sf.briar.api.transport.TransportConstants.TAG_LENGTH;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.util.Arrays;
import javax.crypto.Mac;
import junit.framework.TestCase;
import net.sf.briar.api.crypto.CryptoComponent;
import net.sf.briar.api.transport.PacketWriter;
import net.sf.briar.crypto.CryptoModule;
import net.sf.briar.util.StringUtils;
import org.junit.Test;
import com.google.inject.Guice;
import com.google.inject.Injector;
public class PacketWriterImplTest extends TestCase {
private final Mac mac;
public PacketWriterImplTest() throws Exception {
super();
Injector i = Guice.createInjector(new CryptoModule());
CryptoComponent crypto = i.getInstance(CryptoComponent.class);
mac = crypto.getMac();
mac.init(crypto.generateSecretKey());
}
@Test
public void testFirstWriteTriggersTag() throws Exception {
ByteArrayOutputStream out = new ByteArrayOutputStream();
PacketEncrypter e = new NullPacketEncrypter(out);
PacketWriter p = new PacketWriterImpl(e, mac, 0, 0L);
p.getOutputStream().write(0);
// There should be TAG_BYTES bytes for the tag, 1 byte for the packet
assertTrue(Arrays.equals(new byte[TAG_LENGTH + 1],
out.toByteArray()));
}
@Test
public void testFinishPacketAfterWriteTriggersMac() throws Exception {
// Calculate what the MAC should be
mac.update(new byte[TAG_LENGTH + 1]);
byte[] expectedMac = mac.doFinal();
// Check that the PacketWriter calculates and writes the correct MAC
ByteArrayOutputStream out = new ByteArrayOutputStream();
PacketEncrypter e = new NullPacketEncrypter(out);
PacketWriter p = new PacketWriterImpl(e, mac, 0, 0L);
p.getOutputStream().write(0);
p.finishPacket();
byte[] written = out.toByteArray();
assertEquals(TAG_LENGTH + 1 + expectedMac.length,
written.length);
byte[] actualMac = new byte[expectedMac.length];
System.arraycopy(written, TAG_LENGTH + 1, actualMac, 0,
actualMac.length);
assertTrue(Arrays.equals(expectedMac, actualMac));
}
@Test
public void testExtraCallsToFinishPacketDoNothing() throws Exception {
// Calculate what the MAC should be
mac.update(new byte[TAG_LENGTH + 1]);
byte[] expectedMac = mac.doFinal();
// Check that the PacketWriter calculates and writes the correct MAC
ByteArrayOutputStream out = new ByteArrayOutputStream();
PacketEncrypter e = new NullPacketEncrypter(out);
PacketWriter p = new PacketWriterImpl(e, mac, 0, 0L);
// Initial calls to finishPacket() should have no effect
p.finishPacket();
p.finishPacket();
p.finishPacket();
p.getOutputStream().write(0);
p.finishPacket();
// Extra calls to finishPacket() should have no effect
p.finishPacket();
p.finishPacket();
p.finishPacket();
byte[] written = out.toByteArray();
assertEquals(TAG_LENGTH + 1 + expectedMac.length,
written.length);
byte[] actualMac = new byte[expectedMac.length];
System.arraycopy(written, TAG_LENGTH + 1, actualMac, 0,
actualMac.length);
assertTrue(Arrays.equals(expectedMac, actualMac));
}
@Test
public void testPacketNumberIsIncremented() throws Exception {
byte[] expectedTag = StringUtils.fromHexString(
"0000" // 16 bits reserved
+ "F00D" // 16 bits for the transport ID
+ "DEADBEEF" // 32 bits for the connection number
+ "00000000" // 32 bits for the packet number
+ "00000000" // 32 bits for the block number
);
assertEquals(TAG_LENGTH, expectedTag.length);
byte[] expectedTag1 = StringUtils.fromHexString(
"0000" // 16 bits reserved
+ "F00D" // 16 bits for the transport ID
+ "DEADBEEF" // 32 bits for the connection number
+ "00000001" // 32 bits for the packet number
+ "00000000" // 32 bits for the block number
);
assertEquals(TAG_LENGTH, expectedTag1.length);
// Calculate what the MAC on the first packet should be
mac.update(expectedTag);
mac.update((byte) 0);
byte[] expectedMac = mac.doFinal();
// Calculate what the MAC on the second packet should be
mac.update(expectedTag1);
mac.update((byte) 0);
byte[] expectedMac1 = mac.doFinal();
// Check that the PacketWriter writes the correct tags and MACs
ByteArrayOutputStream out = new ByteArrayOutputStream();
PacketEncrypter e = new NullPacketEncrypter(out);
PacketWriter p = new PacketWriterImpl(e, mac, 0xF00D, 0xDEADBEEFL);
// Packet one
p.getOutputStream().write(0);
p.finishPacket();
// Packet two
p.getOutputStream().write(0);
p.finishPacket();
byte[] written = out.toByteArray();
assertEquals(TAG_LENGTH + 1 + expectedMac.length
+ TAG_LENGTH + 1 + expectedMac1.length,
written.length);
// Check the first packet's tag
byte[] actualTag = new byte[TAG_LENGTH];
System.arraycopy(written, 0, actualTag, 0, TAG_LENGTH);
assertTrue(Arrays.equals(expectedTag, actualTag));
// Check the first packet's MAC
byte[] actualMac = new byte[expectedMac.length];
System.arraycopy(written, TAG_LENGTH + 1, actualMac, 0,
actualMac.length);
assertTrue(Arrays.equals(expectedMac, actualMac));
// Check the second packet's tag
byte[] actualTag1 = new byte[TAG_LENGTH];
System.arraycopy(written, TAG_LENGTH + 1 + expectedMac.length,
actualTag1, 0, TAG_LENGTH);
assertTrue(Arrays.equals(expectedTag1, actualTag1));
// Check the second packet's MAC
byte[] actualMac1 = new byte[expectedMac1.length];
System.arraycopy(written, TAG_LENGTH + 1 + expectedMac.length
+ TAG_LENGTH + 1, actualMac1, 0, actualMac1.length);
assertTrue(Arrays.equals(expectedMac1, actualMac1));
}
/** A PacketEncrypter that performs no encryption. */
private static class NullPacketEncrypter implements PacketEncrypter {
private final OutputStream out;
private NullPacketEncrypter(OutputStream out) {
this.out = out;
}
public OutputStream getOutputStream() {
return out;
}
public void writeTag(byte[] tag) throws IOException {
out.write(tag);
}
public void finishPacket() {}
}
}

View File

@@ -1,30 +0,0 @@
package net.sf.briar.transport;
import junit.framework.TestCase;
import net.sf.briar.util.StringUtils;
import org.junit.Test;
public class TagDecoderTest extends TestCase {
@Test
public void testReadUint16() {
byte[] b = StringUtils.fromHexString("000000");
assertEquals(0, TagDecoder.readUint16(b, 1));
b = StringUtils.fromHexString("000001");
assertEquals(1, TagDecoder.readUint16(b, 1));
b = StringUtils.fromHexString("00FFFF");
assertEquals(65535, TagDecoder.readUint16(b, 1));
}
@Test
public void testReadUint32() {
byte[] b = StringUtils.fromHexString("0000000000");
assertEquals(0L, TagDecoder.readUint32(b, 1));
b = StringUtils.fromHexString("0000000001");
assertEquals(1L, TagDecoder.readUint32(b, 1));
b = StringUtils.fromHexString("00FFFFFFFF");
assertEquals(4294967295L, TagDecoder.readUint32(b, 1));
}
}

View File

@@ -1,32 +0,0 @@
package net.sf.briar.transport;
import net.sf.briar.util.StringUtils;
import org.junit.Test;
import junit.framework.TestCase;
public class TagEncoderTest extends TestCase {
@Test
public void testWriteUint16() {
byte[] b = new byte[3];
TagEncoder.writeUint16(0, b, 1);
assertEquals("000000", StringUtils.toHexString(b));
TagEncoder.writeUint16(1, b, 1);
assertEquals("000001", StringUtils.toHexString(b));
TagEncoder.writeUint16(65535, b, 1);
assertEquals("00FFFF", StringUtils.toHexString(b));
}
@Test
public void testWriteUint32() {
byte[] b = new byte[5];
TagEncoder.writeUint32(0L, b, 1);
assertEquals("0000000000", StringUtils.toHexString(b));
TagEncoder.writeUint32(1L, b, 1);
assertEquals("0000000001", StringUtils.toHexString(b));
TagEncoder.writeUint32(4294967295L, b, 1);
assertEquals("00FFFFFFFF", StringUtils.toHexString(b));
}
}

View File

@@ -0,0 +1,51 @@
package net.sf.briar.util;
import junit.framework.TestCase;
import org.junit.Test;
public class ByteUtilsTest extends TestCase {
@Test
public void testReadUint16() {
byte[] b = StringUtils.fromHexString("000000");
assertEquals(0, ByteUtils.readUint16(b, 1));
b = StringUtils.fromHexString("000001");
assertEquals(1, ByteUtils.readUint16(b, 1));
b = StringUtils.fromHexString("00FFFF");
assertEquals(65535, ByteUtils.readUint16(b, 1));
}
@Test
public void testReadUint32() {
byte[] b = StringUtils.fromHexString("0000000000");
assertEquals(0L, ByteUtils.readUint32(b, 1));
b = StringUtils.fromHexString("0000000001");
assertEquals(1L, ByteUtils.readUint32(b, 1));
b = StringUtils.fromHexString("00FFFFFFFF");
assertEquals(4294967295L, ByteUtils.readUint32(b, 1));
}
@Test
public void testWriteUint16() {
byte[] b = new byte[3];
ByteUtils.writeUint16(0, b, 1);
assertEquals("000000", StringUtils.toHexString(b));
ByteUtils.writeUint16(1, b, 1);
assertEquals("000001", StringUtils.toHexString(b));
ByteUtils.writeUint16(65535, b, 1);
assertEquals("00FFFF", StringUtils.toHexString(b));
}
@Test
public void testWriteUint32() {
byte[] b = new byte[5];
ByteUtils.writeUint32(0L, b, 1);
assertEquals("0000000000", StringUtils.toHexString(b));
ByteUtils.writeUint32(1L, b, 1);
assertEquals("0000000001", StringUtils.toHexString(b));
ByteUtils.writeUint32(4294967295L, b, 1);
assertEquals("00FFFFFFFF", StringUtils.toHexString(b));
}
}