Merge branch '617-crypto-labels' into 'master'

Use namespaced labels for all crypto operations

See merge request !632
This commit is contained in:
akwizgran
2017-12-05 16:04:35 +00:00
36 changed files with 960 additions and 933 deletions

View File

@@ -3,40 +3,25 @@ package org.briarproject.bramble.crypto;
import org.briarproject.bramble.api.crypto.CryptoComponent;
import org.briarproject.bramble.api.crypto.KeyPair;
import org.briarproject.bramble.api.crypto.SecretKey;
import org.briarproject.bramble.api.system.SecureRandomProvider;
import org.briarproject.bramble.test.BrambleTestCase;
import org.briarproject.bramble.test.TestSecureRandomProvider;
import org.junit.Test;
import static org.briarproject.bramble.api.keyagreement.KeyAgreementConstants.SHARED_SECRET_LABEL;
import static org.junit.Assert.assertArrayEquals;
public class KeyAgreementTest extends BrambleTestCase {
@Test
public void testDeriveMasterSecret() throws Exception {
SecureRandomProvider
secureRandomProvider = new TestSecureRandomProvider();
CryptoComponent crypto = new CryptoComponentImpl(secureRandomProvider);
KeyPair aPair = crypto.generateAgreementKeyPair();
byte[] aPub = aPair.getPublic().getEncoded();
KeyPair bPair = crypto.generateAgreementKeyPair();
byte[] bPub = bPair.getPublic().getEncoded();
SecretKey aMaster = crypto.deriveMasterSecret(aPub, bPair, true);
SecretKey bMaster = crypto.deriveMasterSecret(bPub, aPair, false);
assertArrayEquals(aMaster.getBytes(), bMaster.getBytes());
}
@Test
public void testDeriveSharedSecret() throws Exception {
SecureRandomProvider
secureRandomProvider = new TestSecureRandomProvider();
CryptoComponent crypto = new CryptoComponentImpl(secureRandomProvider);
CryptoComponent crypto =
new CryptoComponentImpl(new TestSecureRandomProvider());
KeyPair aPair = crypto.generateAgreementKeyPair();
byte[] aPub = aPair.getPublic().getEncoded();
KeyPair bPair = crypto.generateAgreementKeyPair();
byte[] bPub = bPair.getPublic().getEncoded();
SecretKey aShared = crypto.deriveSharedSecret(bPub, aPair, true);
SecretKey bShared = crypto.deriveSharedSecret(aPub, bPair, false);
SecretKey aShared = crypto.deriveSharedSecret(SHARED_SECRET_LABEL,
bPair.getPublic(), aPair, true);
SecretKey bShared = crypto.deriveSharedSecret(SHARED_SECRET_LABEL,
aPair.getPublic(), bPair, false);
assertArrayEquals(aShared.getBytes(), bShared.getBytes());
}
}

View File

@@ -3,11 +3,11 @@ package org.briarproject.bramble.crypto;
import org.briarproject.bramble.api.Bytes;
import org.briarproject.bramble.api.crypto.CryptoComponent;
import org.briarproject.bramble.api.crypto.SecretKey;
import org.briarproject.bramble.api.crypto.TransportCrypto;
import org.briarproject.bramble.api.plugin.TransportId;
import org.briarproject.bramble.api.transport.TransportKeys;
import org.briarproject.bramble.test.BrambleTestCase;
import org.briarproject.bramble.test.TestSecureRandomProvider;
import org.briarproject.bramble.test.TestUtils;
import org.junit.Test;
import java.util.ArrayList;
@@ -16,35 +16,34 @@ import java.util.HashSet;
import java.util.List;
import java.util.Set;
import static org.briarproject.bramble.test.TestUtils.getSecretKey;
import static org.junit.Assert.assertArrayEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
public class KeyDerivationTest extends BrambleTestCase {
private final CryptoComponent crypto =
new CryptoComponentImpl(new TestSecureRandomProvider());
private final TransportCrypto transportCrypto =
new TransportCryptoImpl(crypto);
private final TransportId transportId = new TransportId("id");
private final CryptoComponent crypto;
private final SecretKey master;
public KeyDerivationTest() {
crypto = new CryptoComponentImpl(new TestSecureRandomProvider());
master = TestUtils.getSecretKey();
}
private final SecretKey master = getSecretKey();
@Test
public void testKeysAreDistinct() {
TransportKeys k = crypto.deriveTransportKeys(transportId, master,
123, true);
TransportKeys k = transportCrypto.deriveTransportKeys(transportId,
master, 123, true);
assertAllDifferent(k);
}
@Test
public void testCurrentKeysMatchCurrentKeysOfContact() {
// Start in rotation period 123
TransportKeys kA = crypto.deriveTransportKeys(transportId, master,
123, true);
TransportKeys kB = crypto.deriveTransportKeys(transportId, master,
123, false);
TransportKeys kA = transportCrypto.deriveTransportKeys(transportId,
master, 123, true);
TransportKeys kB = transportCrypto.deriveTransportKeys(transportId,
master, 123, false);
// Alice's incoming keys should equal Bob's outgoing keys
assertArrayEquals(kA.getCurrentIncomingKeys().getTagKey().getBytes(),
kB.getCurrentOutgoingKeys().getTagKey().getBytes());
@@ -56,8 +55,8 @@ public class KeyDerivationTest extends BrambleTestCase {
assertArrayEquals(kA.getCurrentOutgoingKeys().getHeaderKey().getBytes(),
kB.getCurrentIncomingKeys().getHeaderKey().getBytes());
// Rotate into the future
kA = crypto.rotateTransportKeys(kA, 456);
kB = crypto.rotateTransportKeys(kB, 456);
kA = transportCrypto.rotateTransportKeys(kA, 456);
kB = transportCrypto.rotateTransportKeys(kB, 456);
// Alice's incoming keys should equal Bob's outgoing keys
assertArrayEquals(kA.getCurrentIncomingKeys().getTagKey().getBytes(),
kB.getCurrentOutgoingKeys().getTagKey().getBytes());
@@ -73,22 +72,23 @@ public class KeyDerivationTest extends BrambleTestCase {
@Test
public void testPreviousKeysMatchPreviousKeysOfContact() {
// Start in rotation period 123
TransportKeys kA = crypto.deriveTransportKeys(transportId, master,
123, true);
TransportKeys kB = crypto.deriveTransportKeys(transportId, master,
123, false);
TransportKeys kA = transportCrypto.deriveTransportKeys(transportId,
master, 123, true);
TransportKeys kB = transportCrypto.deriveTransportKeys(transportId,
master, 123, false);
// Compare Alice's previous keys in period 456 with Bob's current keys
// in period 455
kA = crypto.rotateTransportKeys(kA, 456);
kB = crypto.rotateTransportKeys(kB, 455);
kA = transportCrypto.rotateTransportKeys(kA, 456);
kB = transportCrypto.rotateTransportKeys(kB, 455);
// Alice's previous incoming keys should equal Bob's outgoing keys
assertArrayEquals(kA.getPreviousIncomingKeys().getTagKey().getBytes(),
kB.getCurrentOutgoingKeys().getTagKey().getBytes());
assertArrayEquals(kA.getPreviousIncomingKeys().getHeaderKey().getBytes(),
assertArrayEquals(
kA.getPreviousIncomingKeys().getHeaderKey().getBytes(),
kB.getCurrentOutgoingKeys().getHeaderKey().getBytes());
// Compare Alice's current keys in period 456 with Bob's previous keys
// in period 457
kB = crypto.rotateTransportKeys(kB, 457);
kB = transportCrypto.rotateTransportKeys(kB, 457);
// Alice's outgoing keys should equal Bob's previous incoming keys
assertArrayEquals(kA.getCurrentOutgoingKeys().getTagKey().getBytes(),
kB.getPreviousIncomingKeys().getTagKey().getBytes());
@@ -99,14 +99,14 @@ public class KeyDerivationTest extends BrambleTestCase {
@Test
public void testNextKeysMatchNextKeysOfContact() {
// Start in rotation period 123
TransportKeys kA = crypto.deriveTransportKeys(transportId, master,
123, true);
TransportKeys kB = crypto.deriveTransportKeys(transportId, master,
123, false);
TransportKeys kA = transportCrypto.deriveTransportKeys(transportId,
master, 123, true);
TransportKeys kB = transportCrypto.deriveTransportKeys(transportId,
master, 123, false);
// Compare Alice's current keys in period 456 with Bob's next keys in
// period 455
kA = crypto.rotateTransportKeys(kA, 456);
kB = crypto.rotateTransportKeys(kB, 455);
kA = transportCrypto.rotateTransportKeys(kA, 456);
kB = transportCrypto.rotateTransportKeys(kB, 455);
// Alice's outgoing keys should equal Bob's next incoming keys
assertArrayEquals(kA.getCurrentOutgoingKeys().getTagKey().getBytes(),
kB.getNextIncomingKeys().getTagKey().getBytes());
@@ -114,7 +114,7 @@ public class KeyDerivationTest extends BrambleTestCase {
kB.getNextIncomingKeys().getHeaderKey().getBytes());
// Compare Alice's next keys in period 456 with Bob's current keys
// in period 457
kB = crypto.rotateTransportKeys(kB, 457);
kB = transportCrypto.rotateTransportKeys(kB, 457);
// Alice's next incoming keys should equal Bob's outgoing keys
assertArrayEquals(kA.getNextIncomingKeys().getTagKey().getBytes(),
kB.getCurrentOutgoingKeys().getTagKey().getBytes());
@@ -124,12 +124,12 @@ public class KeyDerivationTest extends BrambleTestCase {
@Test
public void testMasterKeyAffectsOutput() {
SecretKey master1 = TestUtils.getSecretKey();
SecretKey master1 = getSecretKey();
assertFalse(Arrays.equals(master.getBytes(), master1.getBytes()));
TransportKeys k = crypto.deriveTransportKeys(transportId, master,
123, true);
TransportKeys k1 = crypto.deriveTransportKeys(transportId, master1,
123, true);
TransportKeys k = transportCrypto.deriveTransportKeys(transportId,
master, 123, true);
TransportKeys k1 = transportCrypto.deriveTransportKeys(transportId,
master1, 123, true);
assertAllDifferent(k, k1);
}
@@ -137,10 +137,10 @@ public class KeyDerivationTest extends BrambleTestCase {
public void testTransportIdAffectsOutput() {
TransportId transportId1 = new TransportId("id1");
assertFalse(transportId.getString().equals(transportId1.getString()));
TransportKeys k = crypto.deriveTransportKeys(transportId, master,
123, true);
TransportKeys k1 = crypto.deriveTransportKeys(transportId1, master,
123, true);
TransportKeys k = transportCrypto.deriveTransportKeys(transportId,
master, 123, true);
TransportKeys k1 = transportCrypto.deriveTransportKeys(transportId1,
master, 123, true);
assertAllDifferent(k, k1);
}

View File

@@ -4,42 +4,49 @@ import org.briarproject.bramble.api.crypto.CryptoComponent;
import org.briarproject.bramble.api.crypto.SecretKey;
import org.briarproject.bramble.test.BrambleTestCase;
import org.briarproject.bramble.test.TestSecureRandomProvider;
import org.briarproject.bramble.test.TestUtils;
import org.junit.Test;
import java.util.Arrays;
import static org.briarproject.bramble.test.TestUtils.getRandomBytes;
import static org.briarproject.bramble.test.TestUtils.getSecretKey;
import static org.briarproject.bramble.util.StringUtils.getRandomString;
import static org.junit.Assert.assertArrayEquals;
import static org.junit.Assert.assertFalse;
public class MacTest extends BrambleTestCase {
private final CryptoComponent crypto;
private final CryptoComponent crypto =
new CryptoComponentImpl(new TestSecureRandomProvider());
private final SecretKey k = TestUtils.getSecretKey();
private final byte[] inputBytes = TestUtils.getRandomBytes(123);
private final byte[] inputBytes1 = TestUtils.getRandomBytes(234);
private final byte[] inputBytes2 = new byte[0];
public MacTest() {
crypto = new CryptoComponentImpl(new TestSecureRandomProvider());
}
private final SecretKey key1 = getSecretKey(), key2 = getSecretKey();
private final String label1 = getRandomString(123);
private final String label2 = getRandomString(123);
private final byte[] input1 = getRandomBytes(123);
private final byte[] input2 = getRandomBytes(234);
private final byte[] input3 = new byte[0];
@Test
public void testIdenticalKeysAndInputsProduceIdenticalMacs() {
// Calculate the MAC twice - the results should be identical
byte[] mac = crypto.mac(k, inputBytes, inputBytes1, inputBytes2);
byte[] mac1 = crypto.mac(k, inputBytes, inputBytes1, inputBytes2);
byte[] mac = crypto.mac(label1, key1, input1, input2, input3);
byte[] mac1 = crypto.mac(label1, key1, input1, input2, input3);
assertArrayEquals(mac, mac1);
}
@Test
public void testDifferentLabelsProduceDifferentMacs() {
// Calculate the MAC with each label - the results should be different
byte[] mac = crypto.mac(label1, key1, input1, input2, input3);
byte[] mac1 = crypto.mac(label2, key1, input1, input2, input3);
assertFalse(Arrays.equals(mac, mac1));
}
@Test
public void testDifferentKeysProduceDifferentMacs() {
// Generate second random key
SecretKey k1 = TestUtils.getSecretKey();
// Calculate the MAC with each key - the results should be different
byte[] mac = crypto.mac(k, inputBytes, inputBytes1, inputBytes2);
byte[] mac1 = crypto.mac(k1, inputBytes, inputBytes1, inputBytes2);
byte[] mac = crypto.mac(label1, key1, input1, input2, input3);
byte[] mac1 = crypto.mac(label1, key2, input1, input2, input3);
assertFalse(Arrays.equals(mac, mac1));
}
@@ -47,8 +54,8 @@ public class MacTest extends BrambleTestCase {
public void testDifferentInputsProduceDifferentMacs() {
// Calculate the MAC with the inputs in different orders - the results
// should be different
byte[] mac = crypto.mac(k, inputBytes, inputBytes1, inputBytes2);
byte[] mac1 = crypto.mac(k, inputBytes2, inputBytes1, inputBytes);
byte[] mac = crypto.mac(label1, key1, input1, input2, input3);
byte[] mac1 = crypto.mac(label1, key1, input3, input2, input1);
assertFalse(Arrays.equals(mac, mac1));
}

View File

@@ -3,9 +3,8 @@ package org.briarproject.bramble.crypto;
import org.briarproject.bramble.api.Bytes;
import org.briarproject.bramble.api.crypto.CryptoComponent;
import org.briarproject.bramble.api.crypto.SecretKey;
import org.briarproject.bramble.test.BrambleTestCase;
import org.briarproject.bramble.test.TestSecureRandomProvider;
import org.briarproject.bramble.test.TestUtils;
import org.briarproject.bramble.api.crypto.TransportCrypto;
import org.briarproject.bramble.test.BrambleMockTestCase;
import org.junit.Test;
import java.util.HashSet;
@@ -14,25 +13,25 @@ import java.util.Set;
import static junit.framework.TestCase.assertTrue;
import static org.briarproject.bramble.api.transport.TransportConstants.PROTOCOL_VERSION;
import static org.briarproject.bramble.api.transport.TransportConstants.TAG_LENGTH;
import static org.briarproject.bramble.test.TestUtils.getSecretKey;
public class TagEncodingTest extends BrambleTestCase {
public class TagEncodingTest extends BrambleMockTestCase {
private final CryptoComponent crypto;
private final SecretKey tagKey;
private final CryptoComponent crypto = context.mock(CryptoComponent.class);
private final TransportCrypto transportCrypto =
new TransportCryptoImpl(crypto);
private final SecretKey tagKey = getSecretKey();
private final long streamNumber = 1234567890;
public TagEncodingTest() {
crypto = new CryptoComponentImpl(new TestSecureRandomProvider());
tagKey = TestUtils.getSecretKey();
}
@Test
public void testKeyAffectsTag() throws Exception {
Set<Bytes> set = new HashSet<>();
for (int i = 0; i < 100; i++) {
byte[] tag = new byte[TAG_LENGTH];
SecretKey tagKey = TestUtils.getSecretKey();
crypto.encodeTag(tag, tagKey, PROTOCOL_VERSION, streamNumber);
SecretKey tagKey = getSecretKey();
transportCrypto.encodeTag(tag, tagKey, PROTOCOL_VERSION,
streamNumber);
assertTrue(set.add(new Bytes(tag)));
}
}
@@ -42,7 +41,8 @@ public class TagEncodingTest extends BrambleTestCase {
Set<Bytes> set = new HashSet<>();
for (int i = 0; i < 100; i++) {
byte[] tag = new byte[TAG_LENGTH];
crypto.encodeTag(tag, tagKey, PROTOCOL_VERSION + i, streamNumber);
transportCrypto.encodeTag(tag, tagKey, PROTOCOL_VERSION + i,
streamNumber);
assertTrue(set.add(new Bytes(tag)));
}
}
@@ -52,7 +52,8 @@ public class TagEncodingTest extends BrambleTestCase {
Set<Bytes> set = new HashSet<>();
for (int i = 0; i < 100; i++) {
byte[] tag = new byte[TAG_LENGTH];
crypto.encodeTag(tag, tagKey, PROTOCOL_VERSION, streamNumber + i);
transportCrypto.encodeTag(tag, tagKey, PROTOCOL_VERSION,
streamNumber + i);
assertTrue(set.add(new Bytes(tag)));
}
}

View File

@@ -1,13 +1,14 @@
package org.briarproject.bramble.keyagreement;
import org.briarproject.bramble.api.crypto.CryptoComponent;
import org.briarproject.bramble.api.crypto.KeyAgreementCrypto;
import org.briarproject.bramble.api.crypto.KeyPair;
import org.briarproject.bramble.api.crypto.KeyParser;
import org.briarproject.bramble.api.crypto.PublicKey;
import org.briarproject.bramble.api.crypto.SecretKey;
import org.briarproject.bramble.api.keyagreement.Payload;
import org.briarproject.bramble.api.keyagreement.PayloadEncoder;
import org.briarproject.bramble.test.BrambleTestCase;
import org.briarproject.bramble.test.TestUtils;
import org.jmock.Expectations;
import org.jmock.auto.Mock;
import org.jmock.integration.junit4.JUnitRuleMockery;
@@ -16,6 +17,10 @@ import org.junit.Rule;
import org.junit.Test;
import static org.briarproject.bramble.api.keyagreement.KeyAgreementConstants.COMMIT_LENGTH;
import static org.briarproject.bramble.api.keyagreement.KeyAgreementConstants.MASTER_SECRET_LABEL;
import static org.briarproject.bramble.api.keyagreement.KeyAgreementConstants.SHARED_SECRET_LABEL;
import static org.briarproject.bramble.test.TestUtils.getRandomBytes;
import static org.briarproject.bramble.test.TestUtils.getSecretKey;
import static org.hamcrest.Matchers.equalTo;
import static org.hamcrest.Matchers.is;
import static org.junit.Assert.assertThat;
@@ -28,34 +33,33 @@ public class KeyAgreementProtocolTest extends BrambleTestCase {
setImposteriser(ClassImposteriser.INSTANCE);
}};
private static final byte[] ALICE_PUBKEY = TestUtils.getRandomBytes(32);
private static final byte[] ALICE_COMMIT =
TestUtils.getRandomBytes(COMMIT_LENGTH);
private static final byte[] ALICE_PAYLOAD =
TestUtils.getRandomBytes(COMMIT_LENGTH + 8);
private final PublicKey alicePubKey =
context.mock(PublicKey.class, "alice");
private final byte[] alicePubKeyBytes = getRandomBytes(32);
private final byte[] aliceCommit = getRandomBytes(COMMIT_LENGTH);
private final byte[] alicePayload = getRandomBytes(COMMIT_LENGTH + 8);
private final byte[] aliceConfirm = getRandomBytes(SecretKey.LENGTH);
private static final byte[] BOB_PUBKEY = TestUtils.getRandomBytes(32);
private static final byte[] BOB_COMMIT =
TestUtils.getRandomBytes(COMMIT_LENGTH);
private static final byte[] BOB_PAYLOAD =
TestUtils.getRandomBytes(COMMIT_LENGTH + 19);
private final PublicKey bobPubKey = context.mock(PublicKey.class, "bob");
private final byte[] bobPubKeyBytes = getRandomBytes(32);
private final byte[] bobCommit = getRandomBytes(COMMIT_LENGTH);
private final byte[] bobPayload = getRandomBytes(COMMIT_LENGTH + 19);
private final byte[] bobConfirm = getRandomBytes(SecretKey.LENGTH);
private static final byte[] ALICE_CONFIRM =
TestUtils.getRandomBytes(SecretKey.LENGTH);
private static final byte[] BOB_CONFIRM =
TestUtils.getRandomBytes(SecretKey.LENGTH);
private static final byte[] BAD_PUBKEY = TestUtils.getRandomBytes(32);
private static final byte[] BAD_COMMIT =
TestUtils.getRandomBytes(COMMIT_LENGTH);
private static final byte[] BAD_CONFIRM =
TestUtils.getRandomBytes(SecretKey.LENGTH);
private final PublicKey badPubKey = context.mock(PublicKey.class, "bad");
private final byte[] badPubKeyBytes = getRandomBytes(32);
private final byte[] badCommit = getRandomBytes(COMMIT_LENGTH);
private final byte[] badConfirm = getRandomBytes(SecretKey.LENGTH);
@Mock
KeyAgreementProtocol.Callbacks callbacks;
@Mock
CryptoComponent crypto;
@Mock
KeyAgreementCrypto keyAgreementCrypto;
@Mock
KeyParser keyParser;
@Mock
PayloadEncoder payloadEncoder;
@Mock
KeyAgreementTransport transport;
@@ -65,60 +69,67 @@ public class KeyAgreementProtocolTest extends BrambleTestCase {
@Test
public void testAliceProtocol() throws Exception {
// set up
Payload theirPayload = new Payload(BOB_COMMIT, null);
Payload ourPayload = new Payload(ALICE_COMMIT, null);
Payload theirPayload = new Payload(bobCommit, null);
Payload ourPayload = new Payload(aliceCommit, null);
KeyPair ourKeyPair = new KeyPair(ourPubKey, null);
SecretKey sharedSecret = TestUtils.getSecretKey();
SecretKey masterSecret = TestUtils.getSecretKey();
SecretKey sharedSecret = getSecretKey();
SecretKey masterSecret = getSecretKey();
KeyAgreementProtocol protocol =
new KeyAgreementProtocol(callbacks, crypto, payloadEncoder,
transport, theirPayload, ourPayload, ourKeyPair, true);
KeyAgreementProtocol protocol = new KeyAgreementProtocol(callbacks,
crypto, keyAgreementCrypto, payloadEncoder, transport,
theirPayload, ourPayload, ourKeyPair, true);
// expectations
context.checking(new Expectations() {{
// Helpers
allowing(payloadEncoder).encode(ourPayload);
will(returnValue(ALICE_PAYLOAD));
will(returnValue(alicePayload));
allowing(payloadEncoder).encode(theirPayload);
will(returnValue(BOB_PAYLOAD));
will(returnValue(bobPayload));
allowing(ourPubKey).getEncoded();
will(returnValue(ALICE_PUBKEY));
will(returnValue(alicePubKeyBytes));
allowing(crypto).getAgreementKeyParser();
will(returnValue(keyParser));
// Alice sends her public key
oneOf(transport).sendKey(ALICE_PUBKEY);
oneOf(transport).sendKey(alicePubKeyBytes);
// Alice receives Bob's public key
oneOf(callbacks).connectionWaiting();
oneOf(transport).receiveKey();
will(returnValue(BOB_PUBKEY));
will(returnValue(bobPubKeyBytes));
oneOf(callbacks).initialRecordReceived();
oneOf(keyParser).parsePublicKey(bobPubKeyBytes);
will(returnValue(bobPubKey));
// Alice verifies Bob's public key
oneOf(crypto).deriveKeyCommitment(BOB_PUBKEY);
will(returnValue(BOB_COMMIT));
oneOf(keyAgreementCrypto).deriveKeyCommitment(bobPubKey);
will(returnValue(bobCommit));
// Alice computes shared secret
oneOf(crypto).deriveSharedSecret(BOB_PUBKEY, ourKeyPair, true);
oneOf(crypto).deriveSharedSecret(SHARED_SECRET_LABEL, bobPubKey,
ourKeyPair, true);
will(returnValue(sharedSecret));
// Alice sends her confirmation record
oneOf(crypto).deriveConfirmationRecord(sharedSecret, BOB_PAYLOAD,
ALICE_PAYLOAD, BOB_PUBKEY, ourKeyPair, true, true);
will(returnValue(ALICE_CONFIRM));
oneOf(transport).sendConfirm(ALICE_CONFIRM);
oneOf(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
bobPayload, alicePayload, bobPubKey, ourKeyPair,
true, true);
will(returnValue(aliceConfirm));
oneOf(transport).sendConfirm(aliceConfirm);
// Alice receives Bob's confirmation record
oneOf(transport).receiveConfirm();
will(returnValue(BOB_CONFIRM));
will(returnValue(bobConfirm));
// Alice verifies Bob's confirmation record
oneOf(crypto).deriveConfirmationRecord(sharedSecret, BOB_PAYLOAD,
ALICE_PAYLOAD, BOB_PUBKEY, ourKeyPair, true, false);
will(returnValue(BOB_CONFIRM));
oneOf(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
bobPayload, alicePayload, bobPubKey, ourKeyPair,
true, false);
will(returnValue(bobConfirm));
// Alice computes master secret
oneOf(crypto).deriveMasterSecret(sharedSecret);
oneOf(crypto).deriveKey(MASTER_SECRET_LABEL, sharedSecret);
will(returnValue(masterSecret));
}});
@@ -129,59 +140,66 @@ public class KeyAgreementProtocolTest extends BrambleTestCase {
@Test
public void testBobProtocol() throws Exception {
// set up
Payload theirPayload = new Payload(ALICE_COMMIT, null);
Payload ourPayload = new Payload(BOB_COMMIT, null);
Payload theirPayload = new Payload(aliceCommit, null);
Payload ourPayload = new Payload(bobCommit, null);
KeyPair ourKeyPair = new KeyPair(ourPubKey, null);
SecretKey sharedSecret = TestUtils.getSecretKey();
SecretKey masterSecret = TestUtils.getSecretKey();
SecretKey sharedSecret = getSecretKey();
SecretKey masterSecret = getSecretKey();
KeyAgreementProtocol protocol =
new KeyAgreementProtocol(callbacks, crypto, payloadEncoder,
transport, theirPayload, ourPayload, ourKeyPair, false);
KeyAgreementProtocol protocol = new KeyAgreementProtocol(callbacks,
crypto, keyAgreementCrypto, payloadEncoder, transport,
theirPayload, ourPayload, ourKeyPair, false);
// expectations
context.checking(new Expectations() {{
// Helpers
allowing(payloadEncoder).encode(ourPayload);
will(returnValue(BOB_PAYLOAD));
will(returnValue(bobPayload));
allowing(payloadEncoder).encode(theirPayload);
will(returnValue(ALICE_PAYLOAD));
will(returnValue(alicePayload));
allowing(ourPubKey).getEncoded();
will(returnValue(BOB_PUBKEY));
will(returnValue(bobPubKeyBytes));
allowing(crypto).getAgreementKeyParser();
will(returnValue(keyParser));
// Bob receives Alice's public key
oneOf(transport).receiveKey();
will(returnValue(ALICE_PUBKEY));
will(returnValue(alicePubKeyBytes));
oneOf(callbacks).initialRecordReceived();
oneOf(keyParser).parsePublicKey(alicePubKeyBytes);
will(returnValue(alicePubKey));
// Bob verifies Alice's public key
oneOf(crypto).deriveKeyCommitment(ALICE_PUBKEY);
will(returnValue(ALICE_COMMIT));
oneOf(keyAgreementCrypto).deriveKeyCommitment(alicePubKey);
will(returnValue(aliceCommit));
// Bob sends his public key
oneOf(transport).sendKey(BOB_PUBKEY);
oneOf(transport).sendKey(bobPubKeyBytes);
// Bob computes shared secret
oneOf(crypto).deriveSharedSecret(ALICE_PUBKEY, ourKeyPair, false);
oneOf(crypto).deriveSharedSecret(SHARED_SECRET_LABEL, alicePubKey,
ourKeyPair, false);
will(returnValue(sharedSecret));
// Bob receives Alices's confirmation record
oneOf(transport).receiveConfirm();
will(returnValue(ALICE_CONFIRM));
will(returnValue(aliceConfirm));
// Bob verifies Alice's confirmation record
oneOf(crypto).deriveConfirmationRecord(sharedSecret, ALICE_PAYLOAD,
BOB_PAYLOAD, ALICE_PUBKEY, ourKeyPair, false, true);
will(returnValue(ALICE_CONFIRM));
oneOf(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
alicePayload, bobPayload, alicePubKey, ourKeyPair,
false, true);
will(returnValue(aliceConfirm));
// Bob sends his confirmation record
oneOf(crypto).deriveConfirmationRecord(sharedSecret, ALICE_PAYLOAD,
BOB_PAYLOAD, ALICE_PUBKEY, ourKeyPair, false, false);
will(returnValue(BOB_CONFIRM));
oneOf(transport).sendConfirm(BOB_CONFIRM);
oneOf(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
alicePayload, bobPayload, alicePubKey, ourKeyPair,
false, false);
will(returnValue(bobConfirm));
oneOf(transport).sendConfirm(bobConfirm);
// Bob computes master secret
oneOf(crypto).deriveMasterSecret(sharedSecret);
oneOf(crypto).deriveKey(MASTER_SECRET_LABEL, sharedSecret);
will(returnValue(masterSecret));
}});
@@ -192,38 +210,43 @@ public class KeyAgreementProtocolTest extends BrambleTestCase {
@Test(expected = AbortException.class)
public void testAliceProtocolAbortOnBadKey() throws Exception {
// set up
Payload theirPayload = new Payload(BOB_COMMIT, null);
Payload ourPayload = new Payload(ALICE_COMMIT, null);
Payload theirPayload = new Payload(bobCommit, null);
Payload ourPayload = new Payload(aliceCommit, null);
KeyPair ourKeyPair = new KeyPair(ourPubKey, null);
KeyAgreementProtocol protocol =
new KeyAgreementProtocol(callbacks, crypto, payloadEncoder,
transport, theirPayload, ourPayload, ourKeyPair, true);
KeyAgreementProtocol protocol = new KeyAgreementProtocol(callbacks,
crypto, keyAgreementCrypto, payloadEncoder, transport,
theirPayload, ourPayload, ourKeyPair, true);
// expectations
context.checking(new Expectations() {{
// Helpers
allowing(ourPubKey).getEncoded();
will(returnValue(ALICE_PUBKEY));
will(returnValue(alicePubKeyBytes));
allowing(crypto).getAgreementKeyParser();
will(returnValue(keyParser));
// Alice sends her public key
oneOf(transport).sendKey(ALICE_PUBKEY);
oneOf(transport).sendKey(alicePubKeyBytes);
// Alice receives a bad public key
oneOf(callbacks).connectionWaiting();
oneOf(transport).receiveKey();
will(returnValue(BAD_PUBKEY));
will(returnValue(badPubKeyBytes));
oneOf(callbacks).initialRecordReceived();
oneOf(keyParser).parsePublicKey(badPubKeyBytes);
will(returnValue(badPubKey));
// Alice verifies Bob's public key
oneOf(crypto).deriveKeyCommitment(BAD_PUBKEY);
will(returnValue(BAD_COMMIT));
oneOf(keyAgreementCrypto).deriveKeyCommitment(badPubKey);
will(returnValue(badCommit));
// Alice aborts
oneOf(transport).sendAbort(false);
// Alice never computes shared secret
never(crypto).deriveSharedSecret(BAD_PUBKEY, ourKeyPair, true);
never(crypto).deriveSharedSecret(SHARED_SECRET_LABEL, badPubKey,
ourKeyPair, true);
}});
// execute
@@ -233,34 +256,38 @@ public class KeyAgreementProtocolTest extends BrambleTestCase {
@Test(expected = AbortException.class)
public void testBobProtocolAbortOnBadKey() throws Exception {
// set up
Payload theirPayload = new Payload(ALICE_COMMIT, null);
Payload ourPayload = new Payload(BOB_COMMIT, null);
Payload theirPayload = new Payload(aliceCommit, null);
Payload ourPayload = new Payload(bobCommit, null);
KeyPair ourKeyPair = new KeyPair(ourPubKey, null);
KeyAgreementProtocol protocol =
new KeyAgreementProtocol(callbacks, crypto, payloadEncoder,
transport, theirPayload, ourPayload, ourKeyPair, false);
KeyAgreementProtocol protocol = new KeyAgreementProtocol(callbacks,
crypto, keyAgreementCrypto, payloadEncoder, transport,
theirPayload, ourPayload, ourKeyPair, false);
// expectations
context.checking(new Expectations() {{
// Helpers
allowing(ourPubKey).getEncoded();
will(returnValue(BOB_PUBKEY));
will(returnValue(bobPubKeyBytes));
allowing(crypto).getAgreementKeyParser();
will(returnValue(keyParser));
// Bob receives a bad public key
oneOf(transport).receiveKey();
will(returnValue(BAD_PUBKEY));
will(returnValue(badPubKeyBytes));
oneOf(callbacks).initialRecordReceived();
oneOf(keyParser).parsePublicKey(badPubKeyBytes);
will(returnValue(badPubKey));
// Bob verifies Alice's public key
oneOf(crypto).deriveKeyCommitment(BAD_PUBKEY);
will(returnValue(BAD_COMMIT));
oneOf(keyAgreementCrypto).deriveKeyCommitment(badPubKey);
will(returnValue(badCommit));
// Bob aborts
oneOf(transport).sendAbort(false);
// Bob never sends his public key
never(transport).sendKey(BOB_PUBKEY);
never(transport).sendKey(bobPubKeyBytes);
}});
// execute
@@ -270,62 +297,69 @@ public class KeyAgreementProtocolTest extends BrambleTestCase {
@Test(expected = AbortException.class)
public void testAliceProtocolAbortOnBadConfirm() throws Exception {
// set up
Payload theirPayload = new Payload(BOB_COMMIT, null);
Payload ourPayload = new Payload(ALICE_COMMIT, null);
Payload theirPayload = new Payload(bobCommit, null);
Payload ourPayload = new Payload(aliceCommit, null);
KeyPair ourKeyPair = new KeyPair(ourPubKey, null);
SecretKey sharedSecret = TestUtils.getSecretKey();
SecretKey sharedSecret = getSecretKey();
KeyAgreementProtocol protocol =
new KeyAgreementProtocol(callbacks, crypto, payloadEncoder,
transport, theirPayload, ourPayload, ourKeyPair, true);
KeyAgreementProtocol protocol = new KeyAgreementProtocol(callbacks,
crypto, keyAgreementCrypto, payloadEncoder, transport,
theirPayload, ourPayload, ourKeyPair, true);
// expectations
context.checking(new Expectations() {{
// Helpers
allowing(payloadEncoder).encode(ourPayload);
will(returnValue(ALICE_PAYLOAD));
will(returnValue(alicePayload));
allowing(payloadEncoder).encode(theirPayload);
will(returnValue(BOB_PAYLOAD));
will(returnValue(bobPayload));
allowing(ourPubKey).getEncoded();
will(returnValue(ALICE_PUBKEY));
will(returnValue(alicePubKeyBytes));
allowing(crypto).getAgreementKeyParser();
will(returnValue(keyParser));
// Alice sends her public key
oneOf(transport).sendKey(ALICE_PUBKEY);
oneOf(transport).sendKey(alicePubKeyBytes);
// Alice receives Bob's public key
oneOf(callbacks).connectionWaiting();
oneOf(transport).receiveKey();
will(returnValue(BOB_PUBKEY));
will(returnValue(bobPubKeyBytes));
oneOf(callbacks).initialRecordReceived();
oneOf(keyParser).parsePublicKey(bobPubKeyBytes);
will(returnValue(bobPubKey));
// Alice verifies Bob's public key
oneOf(crypto).deriveKeyCommitment(BOB_PUBKEY);
will(returnValue(BOB_COMMIT));
oneOf(keyAgreementCrypto).deriveKeyCommitment(bobPubKey);
will(returnValue(bobCommit));
// Alice computes shared secret
oneOf(crypto).deriveSharedSecret(BOB_PUBKEY, ourKeyPair, true);
oneOf(crypto).deriveSharedSecret(SHARED_SECRET_LABEL, bobPubKey,
ourKeyPair, true);
will(returnValue(sharedSecret));
// Alice sends her confirmation record
oneOf(crypto).deriveConfirmationRecord(sharedSecret, BOB_PAYLOAD,
ALICE_PAYLOAD, BOB_PUBKEY, ourKeyPair, true, true);
will(returnValue(ALICE_CONFIRM));
oneOf(transport).sendConfirm(ALICE_CONFIRM);
oneOf(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
bobPayload, alicePayload, bobPubKey, ourKeyPair,
true, true);
will(returnValue(aliceConfirm));
oneOf(transport).sendConfirm(aliceConfirm);
// Alice receives a bad confirmation record
oneOf(transport).receiveConfirm();
will(returnValue(BAD_CONFIRM));
will(returnValue(badConfirm));
// Alice verifies Bob's confirmation record
oneOf(crypto).deriveConfirmationRecord(sharedSecret, BOB_PAYLOAD,
ALICE_PAYLOAD, BOB_PUBKEY, ourKeyPair, true, false);
will(returnValue(BOB_CONFIRM));
oneOf(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
bobPayload, alicePayload, bobPubKey, ourKeyPair,
true, false);
will(returnValue(bobConfirm));
// Alice aborts
oneOf(transport).sendAbort(false);
// Alice never computes master secret
never(crypto).deriveMasterSecret(sharedSecret);
never(crypto).deriveKey(MASTER_SECRET_LABEL, sharedSecret);
}});
// execute
@@ -335,56 +369,63 @@ public class KeyAgreementProtocolTest extends BrambleTestCase {
@Test(expected = AbortException.class)
public void testBobProtocolAbortOnBadConfirm() throws Exception {
// set up
Payload theirPayload = new Payload(ALICE_COMMIT, null);
Payload ourPayload = new Payload(BOB_COMMIT, null);
Payload theirPayload = new Payload(aliceCommit, null);
Payload ourPayload = new Payload(bobCommit, null);
KeyPair ourKeyPair = new KeyPair(ourPubKey, null);
SecretKey sharedSecret = TestUtils.getSecretKey();
SecretKey sharedSecret = getSecretKey();
KeyAgreementProtocol protocol =
new KeyAgreementProtocol(callbacks, crypto, payloadEncoder,
transport, theirPayload, ourPayload, ourKeyPair, false);
KeyAgreementProtocol protocol = new KeyAgreementProtocol(callbacks,
crypto, keyAgreementCrypto, payloadEncoder, transport,
theirPayload, ourPayload, ourKeyPair, false);
// expectations
context.checking(new Expectations() {{
// Helpers
allowing(payloadEncoder).encode(ourPayload);
will(returnValue(BOB_PAYLOAD));
will(returnValue(bobPayload));
allowing(payloadEncoder).encode(theirPayload);
will(returnValue(ALICE_PAYLOAD));
will(returnValue(alicePayload));
allowing(ourPubKey).getEncoded();
will(returnValue(BOB_PUBKEY));
will(returnValue(bobPubKeyBytes));
allowing(crypto).getAgreementKeyParser();
will(returnValue(keyParser));
// Bob receives Alice's public key
oneOf(transport).receiveKey();
will(returnValue(ALICE_PUBKEY));
will(returnValue(alicePubKeyBytes));
oneOf(callbacks).initialRecordReceived();
oneOf(keyParser).parsePublicKey(alicePubKeyBytes);
will(returnValue(alicePubKey));
// Bob verifies Alice's public key
oneOf(crypto).deriveKeyCommitment(ALICE_PUBKEY);
will(returnValue(ALICE_COMMIT));
oneOf(keyAgreementCrypto).deriveKeyCommitment(alicePubKey);
will(returnValue(aliceCommit));
// Bob sends his public key
oneOf(transport).sendKey(BOB_PUBKEY);
oneOf(transport).sendKey(bobPubKeyBytes);
// Bob computes shared secret
oneOf(crypto).deriveSharedSecret(ALICE_PUBKEY, ourKeyPair, false);
oneOf(crypto).deriveSharedSecret(SHARED_SECRET_LABEL, alicePubKey,
ourKeyPair, false);
will(returnValue(sharedSecret));
// Bob receives a bad confirmation record
oneOf(transport).receiveConfirm();
will(returnValue(BAD_CONFIRM));
will(returnValue(badConfirm));
// Bob verifies Alice's confirmation record
oneOf(crypto).deriveConfirmationRecord(sharedSecret, ALICE_PAYLOAD,
BOB_PAYLOAD, ALICE_PUBKEY, ourKeyPair, false, true);
will(returnValue(ALICE_CONFIRM));
oneOf(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
alicePayload, bobPayload, alicePubKey, ourKeyPair,
false, true);
will(returnValue(aliceConfirm));
// Bob aborts
oneOf(transport).sendAbort(false);
// Bob never sends his confirmation record
never(crypto).deriveConfirmationRecord(sharedSecret, ALICE_PAYLOAD,
BOB_PAYLOAD, ALICE_PUBKEY, ourKeyPair, false, false);
never(keyAgreementCrypto).deriveConfirmationRecord(sharedSecret,
alicePayload, bobPayload, alicePubKey, ourKeyPair,
false, false);
}});
// execute

View File

@@ -1,8 +1,8 @@
package org.briarproject.bramble.sync;
import org.briarproject.bramble.api.contact.ContactId;
import org.briarproject.bramble.api.crypto.CryptoComponent;
import org.briarproject.bramble.api.crypto.SecretKey;
import org.briarproject.bramble.api.crypto.TransportCrypto;
import org.briarproject.bramble.api.plugin.TransportId;
import org.briarproject.bramble.api.sync.Ack;
import org.briarproject.bramble.api.sync.ClientId;
@@ -57,7 +57,7 @@ public class SyncIntegrationTest extends BrambleTestCase {
@Inject
RecordWriterFactory recordWriterFactory;
@Inject
CryptoComponent crypto;
TransportCrypto transportCrypto;
private final ContactId contactId;
private final TransportId transportId;
@@ -117,7 +117,8 @@ public class SyncIntegrationTest extends BrambleTestCase {
private void read(byte[] connectionData) throws Exception {
// Calculate the expected tag
byte[] expectedTag = new byte[TAG_LENGTH];
crypto.encodeTag(expectedTag, tagKey, PROTOCOL_VERSION, streamNumber);
transportCrypto.encodeTag(expectedTag, tagKey, PROTOCOL_VERSION,
streamNumber);
// Read the tag
InputStream in = new ByteArrayInputStream(connectionData);

View File

@@ -1,8 +1,8 @@
package org.briarproject.bramble.transport;
import org.briarproject.bramble.api.contact.ContactId;
import org.briarproject.bramble.api.crypto.CryptoComponent;
import org.briarproject.bramble.api.crypto.SecretKey;
import org.briarproject.bramble.api.crypto.TransportCrypto;
import org.briarproject.bramble.api.db.DatabaseComponent;
import org.briarproject.bramble.api.db.Transaction;
import org.briarproject.bramble.api.plugin.TransportId;
@@ -11,12 +11,11 @@ import org.briarproject.bramble.api.transport.IncomingKeys;
import org.briarproject.bramble.api.transport.OutgoingKeys;
import org.briarproject.bramble.api.transport.StreamContext;
import org.briarproject.bramble.api.transport.TransportKeys;
import org.briarproject.bramble.test.BrambleTestCase;
import org.briarproject.bramble.test.BrambleMockTestCase;
import org.briarproject.bramble.test.RunAction;
import org.briarproject.bramble.test.TestUtils;
import org.hamcrest.Description;
import org.jmock.Expectations;
import org.jmock.Mockery;
import org.jmock.api.Action;
import org.jmock.api.Invocation;
import org.junit.Test;
@@ -41,7 +40,15 @@ import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertNull;
public class TransportKeyManagerImplTest extends BrambleTestCase {
public class TransportKeyManagerImplTest extends BrambleMockTestCase {
private final DatabaseComponent db = context.mock(DatabaseComponent.class);
private final TransportCrypto transportCrypto =
context.mock(TransportCrypto.class);
private final Executor dbExecutor = context.mock(Executor.class);
private final ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
private final Clock clock = context.mock(Clock.class);
private final TransportId transportId = new TransportId("id");
private final long maxLatency = 30 * 1000; // 30 seconds
@@ -55,14 +62,6 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
@Test
public void testKeysAreRotatedAtStartup() throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
Map<ContactId, TransportKeys> loaded = new LinkedHashMap<>();
TransportKeys shouldRotate = createTransportKeys(900, 0);
TransportKeys shouldNotRotate = createTransportKeys(1000, 0);
@@ -79,14 +78,15 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
oneOf(db).getTransportKeys(txn, transportId);
will(returnValue(loaded));
// Rotate the transport keys
oneOf(crypto).rotateTransportKeys(shouldRotate, 1000);
oneOf(transportCrypto).rotateTransportKeys(shouldRotate, 1000);
will(returnValue(rotated));
oneOf(crypto).rotateTransportKeys(shouldNotRotate, 1000);
oneOf(transportCrypto).rotateTransportKeys(shouldNotRotate, 1000);
will(returnValue(shouldNotRotate));
// Encode the tags (3 sets per contact)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(6).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(6).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction());
}
// Save the keys that were rotated
@@ -97,161 +97,124 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
with(rotationPeriodLength - 1), with(MILLISECONDS));
}});
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
transportKeyManager.start(txn);
context.assertIsSatisfied();
}
@Test
public void testKeysAreRotatedWhenAddingContact() throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
boolean alice = true;
boolean alice = random.nextBoolean();
TransportKeys transportKeys = createTransportKeys(999, 0);
TransportKeys rotated = createTransportKeys(1000, 0);
Transaction txn = new Transaction(null, false);
context.checking(new Expectations() {{
oneOf(crypto).deriveTransportKeys(transportId, masterKey, 999,
alice);
oneOf(transportCrypto).deriveTransportKeys(transportId, masterKey,
999, alice);
will(returnValue(transportKeys));
// Get the current time (1 ms after start of rotation period 1000)
oneOf(clock).currentTimeMillis();
will(returnValue(rotationPeriodLength * 1000 + 1));
// Rotate the transport keys
oneOf(crypto).rotateTransportKeys(transportKeys, 1000);
oneOf(transportCrypto).rotateTransportKeys(transportKeys, 1000);
will(returnValue(rotated));
// Encode the tags (3 sets)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(3).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(3).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction());
}
// Save the keys
oneOf(db).addTransportKeys(txn, contactId, rotated);
}});
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
// The timestamp is 1 ms before the start of rotation period 1000
long timestamp = rotationPeriodLength * 1000 - 1;
transportKeyManager.addContact(txn, contactId, masterKey, timestamp,
alice);
context.assertIsSatisfied();
}
@Test
public void testOutgoingStreamContextIsNullIfContactIsNotFound()
throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
Transaction txn = new Transaction(null, false);
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
assertNull(transportKeyManager.getStreamContext(txn, contactId));
context.assertIsSatisfied();
}
@Test
public void testOutgoingStreamContextIsNullIfStreamCounterIsExhausted()
throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
boolean alice = true;
boolean alice = random.nextBoolean();
// The stream counter has been exhausted
TransportKeys transportKeys = createTransportKeys(1000,
MAX_32_BIT_UNSIGNED + 1);
Transaction txn = new Transaction(null, false);
context.checking(new Expectations() {{
oneOf(crypto).deriveTransportKeys(transportId, masterKey, 1000,
alice);
oneOf(transportCrypto).deriveTransportKeys(transportId, masterKey,
1000, alice);
will(returnValue(transportKeys));
// Get the current time (the start of rotation period 1000)
oneOf(clock).currentTimeMillis();
will(returnValue(rotationPeriodLength * 1000));
// Encode the tags (3 sets)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(3).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(3).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction());
}
// Rotate the transport keys (the keys are unaffected)
oneOf(crypto).rotateTransportKeys(transportKeys, 1000);
oneOf(transportCrypto).rotateTransportKeys(transportKeys, 1000);
will(returnValue(transportKeys));
// Save the keys
oneOf(db).addTransportKeys(txn, contactId, transportKeys);
}});
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
// The timestamp is at the start of rotation period 1000
long timestamp = rotationPeriodLength * 1000;
transportKeyManager.addContact(txn, contactId, masterKey, timestamp,
alice);
assertNull(transportKeyManager.getStreamContext(txn, contactId));
context.assertIsSatisfied();
}
@Test
public void testOutgoingStreamCounterIsIncremented() throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
boolean alice = true;
boolean alice = random.nextBoolean();
// The stream counter can be used one more time before being exhausted
TransportKeys transportKeys = createTransportKeys(1000,
MAX_32_BIT_UNSIGNED);
Transaction txn = new Transaction(null, false);
context.checking(new Expectations() {{
oneOf(crypto).deriveTransportKeys(transportId, masterKey, 1000,
alice);
oneOf(transportCrypto).deriveTransportKeys(transportId, masterKey,
1000, alice);
will(returnValue(transportKeys));
// Get the current time (the start of rotation period 1000)
oneOf(clock).currentTimeMillis();
will(returnValue(rotationPeriodLength * 1000));
// Encode the tags (3 sets)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(3).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(3).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction());
}
// Rotate the transport keys (the keys are unaffected)
oneOf(crypto).rotateTransportKeys(transportKeys, 1000);
oneOf(transportCrypto).rotateTransportKeys(transportKeys, 1000);
will(returnValue(transportKeys));
// Save the keys
oneOf(db).addTransportKeys(txn, contactId, transportKeys);
@@ -259,9 +222,9 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
oneOf(db).incrementStreamCounter(txn, contactId, transportId, 1000);
}});
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
// The timestamp is at the start of rotation period 1000
long timestamp = rotationPeriodLength * 1000;
transportKeyManager.addContact(txn, contactId, masterKey, timestamp,
@@ -277,94 +240,76 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
assertEquals(MAX_32_BIT_UNSIGNED, ctx.getStreamNumber());
// The second request should return null, the counter is exhausted
assertNull(transportKeyManager.getStreamContext(txn, contactId));
context.assertIsSatisfied();
}
@Test
public void testIncomingStreamContextIsNullIfTagIsNotFound()
throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
boolean alice = true;
boolean alice = random.nextBoolean();
TransportKeys transportKeys = createTransportKeys(1000, 0);
Transaction txn = new Transaction(null, false);
context.checking(new Expectations() {{
oneOf(crypto).deriveTransportKeys(transportId, masterKey, 1000,
alice);
oneOf(transportCrypto).deriveTransportKeys(transportId, masterKey,
1000, alice);
will(returnValue(transportKeys));
// Get the current time (the start of rotation period 1000)
oneOf(clock).currentTimeMillis();
will(returnValue(rotationPeriodLength * 1000));
// Encode the tags (3 sets)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(3).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(3).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction());
}
// Rotate the transport keys (the keys are unaffected)
oneOf(crypto).rotateTransportKeys(transportKeys, 1000);
oneOf(transportCrypto).rotateTransportKeys(transportKeys, 1000);
will(returnValue(transportKeys));
// Save the keys
oneOf(db).addTransportKeys(txn, contactId, transportKeys);
}});
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
// The timestamp is at the start of rotation period 1000
long timestamp = rotationPeriodLength * 1000;
transportKeyManager.addContact(txn, contactId, masterKey, timestamp,
alice);
assertNull(transportKeyManager.getStreamContext(txn,
new byte[TAG_LENGTH]));
context.assertIsSatisfied();
}
@Test
public void testTagIsNotRecognisedTwice() throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
boolean alice = true;
boolean alice = random.nextBoolean();
TransportKeys transportKeys = createTransportKeys(1000, 0);
// Keep a copy of the tags
List<byte[]> tags = new ArrayList<>();
Transaction txn = new Transaction(null, false);
context.checking(new Expectations() {{
oneOf(crypto).deriveTransportKeys(transportId, masterKey, 1000,
alice);
oneOf(transportCrypto).deriveTransportKeys(transportId, masterKey,
1000, alice);
will(returnValue(transportKeys));
// Get the current time (the start of rotation period 1000)
oneOf(clock).currentTimeMillis();
will(returnValue(rotationPeriodLength * 1000));
// Encode the tags (3 sets)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(3).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(3).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction(tags));
}
// Rotate the transport keys (the keys are unaffected)
oneOf(crypto).rotateTransportKeys(transportKeys, 1000);
oneOf(transportCrypto).rotateTransportKeys(transportKeys, 1000);
will(returnValue(transportKeys));
// Save the keys
oneOf(db).addTransportKeys(txn, contactId, transportKeys);
// Encode a new tag after sliding the window
oneOf(crypto).encodeTag(with(any(byte[].class)),
oneOf(transportCrypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION),
with((long) REORDERING_WINDOW_SIZE));
will(new EncodeTagAction(tags));
@@ -373,9 +318,9 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
1, new byte[REORDERING_WINDOW_SIZE / 8]);
}});
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
// The timestamp is at the start of rotation period 1000
long timestamp = rotationPeriodLength * 1000;
transportKeyManager.addContact(txn, contactId, masterKey, timestamp,
@@ -395,20 +340,10 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
assertEquals(REORDERING_WINDOW_SIZE * 3 + 1, tags.size());
// The second request should return null, the tag has already been used
assertNull(transportKeyManager.getStreamContext(txn, tag));
context.assertIsSatisfied();
}
@Test
public void testKeysAreRotatedToCurrentPeriod() throws Exception {
Mockery context = new Mockery();
DatabaseComponent db = context.mock(DatabaseComponent.class);
CryptoComponent crypto = context.mock(CryptoComponent.class);
Executor dbExecutor = context.mock(Executor.class);
ScheduledExecutorService scheduler =
context.mock(ScheduledExecutorService.class);
Clock clock = context.mock(Clock.class);
TransportKeys transportKeys = createTransportKeys(1000, 0);
Map<ContactId, TransportKeys> loaded =
Collections.singletonMap(contactId, transportKeys);
@@ -424,12 +359,13 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
oneOf(db).getTransportKeys(txn, transportId);
will(returnValue(loaded));
// Rotate the transport keys (the keys are unaffected)
oneOf(crypto).rotateTransportKeys(transportKeys, 1000);
oneOf(transportCrypto).rotateTransportKeys(transportKeys, 1000);
will(returnValue(transportKeys));
// Encode the tags (3 sets)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(3).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(3).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction());
}
// Schedule key rotation at the start of the next rotation period
@@ -445,13 +381,14 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
oneOf(clock).currentTimeMillis();
will(returnValue(rotationPeriodLength * 1001));
// Rotate the transport keys
oneOf(crypto).rotateTransportKeys(with(any(TransportKeys.class)),
with(1001L));
oneOf(transportCrypto).rotateTransportKeys(
with(any(TransportKeys.class)), with(1001L));
will(returnValue(rotated));
// Encode the tags (3 sets)
for (long i = 0; i < REORDERING_WINDOW_SIZE; i++) {
exactly(3).of(crypto).encodeTag(with(any(byte[].class)),
with(tagKey), with(PROTOCOL_VERSION), with(i));
exactly(3).of(transportCrypto).encodeTag(
with(any(byte[].class)), with(tagKey),
with(PROTOCOL_VERSION), with(i));
will(new EncodeTagAction());
}
// Save the keys that were rotated
@@ -465,12 +402,10 @@ public class TransportKeyManagerImplTest extends BrambleTestCase {
oneOf(db).endTransaction(txn1);
}});
TransportKeyManager
transportKeyManager = new TransportKeyManagerImpl(db,
crypto, dbExecutor, scheduler, clock, transportId, maxLatency);
TransportKeyManager transportKeyManager = new TransportKeyManagerImpl(
db, transportCrypto, dbExecutor, scheduler, clock, transportId,
maxLatency);
transportKeyManager.start(txn);
context.assertIsSatisfied();
}
private TransportKeys createTransportKeys(long rotationPeriod,