Downgrade to 256-bit curve for performance.

Also reduced hash function to 256 bits because our target security level
is now 128 bits.
This commit is contained in:
akwizgran
2015-01-09 13:23:18 +00:00
parent 5d46d3a4b4
commit 112d80420c
10 changed files with 53 additions and 99 deletions

View File

@@ -11,9 +11,9 @@ public interface AuthorConstants {
* Public keys use SEC1 format: 0x04 x y, where x and y are unsigned
* big-endian integers.
* <p>
* For a 384-bit elliptic curve, the maximum length is 2 * (384/8) + 1.
* For a 256-bit elliptic curve, the maximum length is 2 * 256 / 8 + 1.
*/
int MAX_PUBLIC_KEY_LENGTH = 97;
int MAX_PUBLIC_KEY_LENGTH = 65;
/**
* The maximum length of a signature in bytes.
@@ -24,8 +24,8 @@ public interface AuthorConstants {
* length, len3 is len(s) as a DER length, and r and s are signed
* big-endian integers of minimal length.
* <p>
* For a 384-bit elliptic curve, the lengths are one byte each, so the
* maximum length is 2 * (384/8) + 8.
* For a 256-bit elliptic curve, the lengths are one byte each, so the
* maximum length is 2 * 256 / 8 + 8.
*/
int MAX_SIGNATURE_LENGTH = 104;
int MAX_SIGNATURE_LENGTH = 72;
}

View File

@@ -5,7 +5,7 @@ import java.util.Arrays;
public abstract class UniqueId {
/** The length of a unique identifier in bytes. */
public static final int LENGTH = 48;
public static final int LENGTH = 32;
protected final byte[] id;

View File

@@ -3,7 +3,6 @@ package org.briarproject.crypto;
import static java.util.logging.Level.INFO;
import static org.briarproject.api.invitation.InvitationConstants.CODE_BITS;
import static org.briarproject.api.transport.TransportConstants.TAG_LENGTH;
import static org.briarproject.crypto.EllipticCurveConstants.P;
import static org.briarproject.crypto.EllipticCurveConstants.PARAMETERS;
import static org.briarproject.util.ByteUtils.MAX_32_BIT_UNSIGNED;
@@ -35,7 +34,7 @@ import org.spongycastle.crypto.CipherParameters;
import org.spongycastle.crypto.Digest;
import org.spongycastle.crypto.Mac;
import org.spongycastle.crypto.agreement.ECDHCBasicAgreement;
import org.spongycastle.crypto.digests.SHA384Digest;
import org.spongycastle.crypto.digests.SHA256Digest;
import org.spongycastle.crypto.engines.AESLightEngine;
import org.spongycastle.crypto.generators.ECKeyPairGenerator;
import org.spongycastle.crypto.generators.PKCS5S2ParametersGenerator;
@@ -51,8 +50,8 @@ class CryptoComponentImpl implements CryptoComponent {
Logger.getLogger(CryptoComponentImpl.class.getName());
private static final int CIPHER_KEY_BYTES = 32; // 256 bits
private static final int AGREEMENT_KEY_PAIR_BITS = 384;
private static final int SIGNATURE_KEY_PAIR_BITS = 384;
private static final int AGREEMENT_KEY_PAIR_BITS = 256;
private static final int SIGNATURE_KEY_PAIR_BITS = 256;
private static final int STORAGE_IV_BYTES = 16; // 128 bits
private static final int PBKDF_SALT_BYTES = 16; // 128 bits
private static final int PBKDF_TARGET_MILLIS = 500;
@@ -99,9 +98,9 @@ class CryptoComponentImpl implements CryptoComponent {
agreementKeyPairGenerator.init(params);
signatureKeyPairGenerator = new ECKeyPairGenerator();
signatureKeyPairGenerator.init(params);
agreementKeyParser = new Sec1KeyParser(PARAMETERS, P,
agreementKeyParser = new Sec1KeyParser(PARAMETERS,
AGREEMENT_KEY_PAIR_BITS);
signatureKeyParser = new Sec1KeyParser(PARAMETERS, P,
signatureKeyParser = new Sec1KeyParser(PARAMETERS,
SIGNATURE_KEY_PAIR_BITS);
}
@@ -112,7 +111,7 @@ class CryptoComponentImpl implements CryptoComponent {
}
public MessageDigest getMessageDigest() {
return new DoubleDigest(new SHA384Digest());
return new DoubleDigest(new SHA256Digest());
}
public PseudoRandom getPseudoRandom(int seed1, int seed2) {
@@ -405,7 +404,7 @@ class CryptoComponentImpl implements CryptoComponent {
if(label[label.length - 1] != '\0')
throw new IllegalArgumentException();
// Initialise the PRF
Mac prf = new HMac(new SHA384Digest());
Mac prf = new HMac(new SHA256Digest());
KeyParameter k = new KeyParameter(secret);
prf.init(k);
int macLength = prf.getMacSize();
@@ -426,7 +425,7 @@ class CryptoComponentImpl implements CryptoComponent {
// Password-based key derivation function - see PKCS#5 v2.1, section 5.2
private byte[] pbkdf2(String password, byte[] salt, int iterations) {
byte[] utf8 = StringUtils.toUtf8(password);
Digest digest = new SHA384Digest();
Digest digest = new SHA256Digest();
PKCS5S2ParametersGenerator gen = new PKCS5S2ParametersGenerator(digest);
gen.init(utf8, salt, iterations);
int keyLengthInBits = CIPHER_KEY_BYTES * 8;
@@ -468,7 +467,7 @@ class CryptoComponentImpl implements CryptoComponent {
byte[] salt = new byte[PBKDF_SALT_BYTES];
int keyLengthInBits = CIPHER_KEY_BYTES * 8;
long start = System.nanoTime();
Digest digest = new SHA384Digest();
Digest digest = new SHA256Digest();
PKCS5S2ParametersGenerator gen = new PKCS5S2ParametersGenerator(digest);
gen.init(password, salt, iterations);
gen.generateDerivedParameters(keyLengthInBits);

View File

@@ -2,68 +2,29 @@ package org.briarproject.crypto;
import java.math.BigInteger;
import org.spongycastle.asn1.teletrust.TeleTrusTNamedCurves;
import org.spongycastle.asn1.x9.X9ECParameters;
import org.spongycastle.crypto.params.ECDomainParameters;
import org.spongycastle.math.ec.ECCurve;
import org.spongycastle.math.ec.ECMultiplier;
import org.spongycastle.math.ec.ECPoint;
import org.spongycastle.math.ec.MontgomeryLadderMultiplier;
/** Parameters for curve brainpoolP384r1 - see RFC 5639. */
interface EllipticCurveConstants {
/** Parameters for curve brainpoolp256r1 - see RFC 5639. */
class EllipticCurveConstants {
/**
* The prime specifying the finite field. (This is called p in RFC 5639 and
* q in SEC 2.)
*/
BigInteger P = new BigInteger("8CB91E82" + "A3386D28" + "0F5D6F7E" +
"50E641DF" + "152F7109" + "ED5456B4" + "12B1DA19" + "7FB71123" +
"ACD3A729" + "901D1A71" + "87470013" + "3107EC53", 16);
static final ECDomainParameters PARAMETERS;
/**
* A coefficient of the equation y^2 = x^3 + A*x + B defining the elliptic
* curve. (This is called A in RFC 5639 and a in SEC 2.)
*/
BigInteger A = new BigInteger("7BC382C6" + "3D8C150C" + "3C72080A" +
"CE05AFA0" + "C2BEA28E" + "4FB22787" + "139165EF" + "BA91F90F" +
"8AA5814A" + "503AD4EB" + "04A8C7DD" + "22CE2826", 16);
/**
* A coefficient of the equation y^2 = x^3 + A*x + B defining the elliptic
* curve. (This is called B in RFC 5639 b in SEC 2.)
*/
BigInteger B = new BigInteger("04A8C7DD" + "22CE2826" + "8B39B554" +
"16F0447C" + "2FB77DE1" + "07DCD2A6" + "2E880EA5" + "3EEB62D5" +
"7CB43902" + "95DBC994" + "3AB78696" + "FA504C11", 16);
/**
* The x co-ordinate of the base point G. (This is called x in RFC 5639 and
* SEC 2.)
*/
BigInteger X = new BigInteger("1D1C64F0" + "68CF45FF" + "A2A63A81" +
"B7C13F6B" + "8847A3E7" + "7EF14FE3" + "DB7FCAFE" + "0CBD10E8" +
"E826E034" + "36D646AA" + "EF87B2E2" + "47D4AF1E", 16);
/**
* The y co-ordinate of the base point G. (This is called y in RFC 5639 and
* SEC 2.)
*/
BigInteger Y = new BigInteger("8ABE1D75" + "20F9C2A4" + "5CB1EB8E" +
"95CFD552" + "62B70B29" + "FEEC5864" + "E19C054F" + "F9912928" +
"0E464621" + "77918111" + "42820341" + "263C5315", 16);
/**
* The order of the base point G. (This is called q in RFC 5639 and n in
* SEC 2.)
*/
BigInteger Q = new BigInteger("8CB91E82" + "A3386D28" + "0F5D6F7E" +
"50E641DF" + "152F7109" + "ED5456B3" + "1F166E6C" + "AC0425A7" +
"CF3AB6AF" + "6B7FC310" + "3B883202" + "E9046565", 16);
/** The cofactor of G. (This is called h in RFC 5639 and SEC 2.) */
BigInteger H = BigInteger.ONE;
// Static parameter objects derived from the above parameters
ECCurve CURVE = new ECCurve.Fp(P, A, B).configure().setMultiplier(
new MontgomeryLadderMultiplier()).create();
ECPoint G = CURVE.createPoint(X, Y);
ECDomainParameters PARAMETERS = new ECDomainParameters(CURVE, G, Q, H);
static {
// Start with the default implementation of the curve
X9ECParameters x9 = TeleTrusTNamedCurves.getByName("brainpoolp256r1");
// Use a constant-time multiplier
ECMultiplier monty = new MontgomeryLadderMultiplier();
ECCurve curve = x9.getCurve().configure().setMultiplier(monty).create();
BigInteger gX = x9.getG().getAffineXCoord().toBigInteger();
BigInteger gY = x9.getG().getAffineYCoord().toBigInteger();
ECPoint g = curve.createPoint(gX, gY);
// Convert to ECDomainParameters using the new multiplier
PARAMETERS = new ECDomainParameters(curve, g, x9.getN(), x9.getH());
}
}

View File

@@ -29,10 +29,10 @@ class Sec1KeyParser implements KeyParser {
private final BigInteger modulus;
private final int keyBits, bytesPerInt, publicKeyBytes, privateKeyBytes;
Sec1KeyParser(ECDomainParameters params, BigInteger modulus, int keyBits) {
Sec1KeyParser(ECDomainParameters params, int keyBits) {
this.params = params;
this.modulus = modulus;
this.keyBits = keyBits;
modulus = ((ECCurve.Fp) params.getCurve()).getQ();
bytesPerInt = (keyBits + 7) / 8;
publicKeyBytes = 1 + 2 * bytesPerInt;
privateKeyBytes = bytesPerInt;

View File

@@ -7,7 +7,7 @@ import org.briarproject.api.crypto.PrivateKey;
import org.briarproject.api.crypto.PublicKey;
import org.briarproject.api.crypto.Signature;
import org.spongycastle.crypto.Digest;
import org.spongycastle.crypto.digests.SHA384Digest;
import org.spongycastle.crypto.digests.SHA256Digest;
import org.spongycastle.crypto.params.ECPrivateKeyParameters;
import org.spongycastle.crypto.params.ECPublicKeyParameters;
import org.spongycastle.crypto.params.ParametersWithRandom;
@@ -23,7 +23,7 @@ class SignatureImpl implements Signature {
SignatureImpl(SecureRandom secureRandom) {
this.secureRandom = secureRandom;
Digest digest = new SHA384Digest();
Digest digest = new SHA256Digest();
DSAKCalculator calculator = new HMacDSAKCalculator(digest);
signer = new DSADigestSigner(new ECDSASigner(calculator), digest);
}

View File

@@ -62,8 +62,8 @@ import org.briarproject.api.transport.TemporarySecret;
*/
abstract class JdbcDatabase implements Database<Connection> {
private static final int SCHEMA_VERSION = 7;
private static final int MIN_SCHEMA_VERSION = 7;
private static final int SCHEMA_VERSION = 8;
private static final int MIN_SCHEMA_VERSION = 8;
private static final String CREATE_SETTINGS =
"CREATE TABLE settings"

View File

@@ -1,10 +1,6 @@
package org.briarproject.crypto;
import static org.briarproject.crypto.EllipticCurveConstants.CURVE;
import static org.briarproject.crypto.EllipticCurveConstants.G;
import static org.briarproject.crypto.EllipticCurveConstants.H;
import static org.briarproject.crypto.EllipticCurveConstants.PARAMETERS;
import static org.briarproject.crypto.EllipticCurveConstants.Q;
import java.math.BigInteger;
import java.security.SecureRandom;
@@ -27,24 +23,22 @@ public class EllipticCurveMultiplicationTest extends BriarTestCase {
@Test
public void testMultiplierProducesSameResultsAsDefault() throws Exception {
// Instantiate the built-in implementation of the curve, which uses
// the default multiplier
// Instantiate the default implementation of the curve
X9ECParameters defaultX9Parameters =
TeleTrusTNamedCurves.getByName("brainpoolp384r1");
TeleTrusTNamedCurves.getByName("brainpoolp256r1");
ECCurve defaultCurve = defaultX9Parameters.getCurve();
ECPoint defaultG = defaultX9Parameters.getG();
BigInteger defaultQ = defaultX9Parameters.getN();
BigInteger defaultN = defaultX9Parameters.getN();
BigInteger defaultH = defaultX9Parameters.getH();
// Check that the built-in parameters are equal to our parameters,
// which use the Montgomery ladder multiplier
assertEquals(CURVE, defaultCurve);
assertEquals(G, defaultG);
assertEquals(Q, defaultQ);
assertEquals(H, defaultH);
// Check that the default parameters are equal to our parameters
assertEquals(PARAMETERS.getCurve(), defaultCurve);
assertEquals(PARAMETERS.getG(), defaultG);
assertEquals(PARAMETERS.getN(), defaultN);
assertEquals(PARAMETERS.getH(), defaultH);
// ECDomainParameters doesn't have an equals() method, but it's just a
// container for the parameters
ECDomainParameters defaultParameters = new ECDomainParameters(
defaultCurve, defaultG, defaultQ, defaultH);
defaultCurve, defaultG, defaultN, defaultH);
// Generate two key pairs with each set of parameters, using the same
// deterministic PRNG for both sets of parameters
byte[] seed = new byte[32];

View File

@@ -13,7 +13,7 @@ import org.spongycastle.asn1.x9.X9ECParameters;
import org.spongycastle.crypto.AsymmetricCipherKeyPair;
import org.spongycastle.crypto.Digest;
import org.spongycastle.crypto.agreement.ECDHCBasicAgreement;
import org.spongycastle.crypto.digests.SHA384Digest;
import org.spongycastle.crypto.digests.SHA256Digest;
import org.spongycastle.crypto.generators.ECKeyPairGenerator;
import org.spongycastle.crypto.params.ECDomainParameters;
import org.spongycastle.crypto.params.ECKeyGenerationParameters;
@@ -83,7 +83,7 @@ public class EllipticCurvePerformanceTest {
List<byte[]> signatures = new ArrayList<byte[]>();
samples.clear();
for(int i = 0; i < SAMPLES; i++) {
Digest digest = new SHA384Digest();
Digest digest = new SHA256Digest();
DSAKCalculator calculator = new HMacDSAKCalculator(digest);
DSADigestSigner signer = new DSADigestSigner(new ECDSASigner(
calculator), digest);
@@ -97,7 +97,7 @@ public class EllipticCurvePerformanceTest {
// Time some signature verifications
samples.clear();
for(int i = 0; i < SAMPLES; i++) {
Digest digest = new SHA384Digest();
Digest digest = new SHA256Digest();
DSAKCalculator calculator = new HMacDSAKCalculator(digest);
DSADigestSigner signer = new DSADigestSigner(new ECDSASigner(
calculator), digest);

View File

@@ -63,7 +63,7 @@ public class ConsumersTest extends BriarTestCase {
private final java.security.MessageDigest delegate;
private TestMessageDigest() throws GeneralSecurityException {
delegate = java.security.MessageDigest.getInstance("SHA-384");
delegate = java.security.MessageDigest.getInstance("SHA-256");
}
public byte[] digest() {
@@ -99,6 +99,6 @@ public class ConsumersTest extends BriarTestCase {
public void update(byte[] input, int offset, int len) {
delegate.update(input, offset, len);
}
}
}
}